Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain

Lionel Rosier

ESAIM: Control, Optimisation and Calculus of Variations (1997)

  • Volume: 2, page 33-55
  • ISSN: 1292-8119

How to cite

top

Rosier, Lionel. "Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain." ESAIM: Control, Optimisation and Calculus of Variations 2 (1997): 33-55. <http://eudml.org/doc/90511>.

@article{Rosier1997,
author = {Rosier, Lionel},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {controllability; Hilbert uniqueness method; boundary control; nonlinear Korteweg-de Vries equation; bounded domains; fixed point theorem},
language = {eng},
pages = {33-55},
publisher = {EDP Sciences},
title = {Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain},
url = {http://eudml.org/doc/90511},
volume = {2},
year = {1997},
}

TY - JOUR
AU - Rosier, Lionel
TI - Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1997
PB - EDP Sciences
VL - 2
SP - 33
EP - 55
LA - eng
KW - controllability; Hilbert uniqueness method; boundary control; nonlinear Korteweg-de Vries equation; bounded domains; fixed point theorem
UR - http://eudml.org/doc/90511
ER -

References

top
  1. [1] C. Bardos, G. Lebeau and J. Rauch: Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim., 30, 1992, 1024-1065. Zbl0786.93009MR1178650
  2. [2] J. Bona and R. Winther: The Korteweg-de Vries equation, posed in a quarter-plane, SIAM J. Math Anal., 14, 1983, 1056-1106. Zbl0529.35069MR718811
  3. [3] J.M. Coron: Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels, C. R. Acad. Sci. Paris, t. 317, Série I, 1993, 271-276. Zbl0781.76013MR1233425
  4. [4] A.V. Fursikov and O. Y. Imanuvilov: On controllability of certain systems simulating a fluid flow, in Flow Control, IMA, Math. Appl., vol. 68, Gunzberger ed., Springer-Verlag, New York, 1995, 148-184. Zbl0922.93006MR1348646
  5. [5] L.F. Ho: Observabilité frontière de l'équation des ondes, C. R. Acad. Sci. Paris, Série 1 Math., 302, 1986, 443-446. Zbl0598.35060MR838598
  6. [6] A.E. Ingham: Some trigonometrical inequalities with application to the theory of series, Math. A., 41, 1936, 367-379. Zbl0014.21503MR1545625
  7. [7] V. Komornik: Exact controllability and stabilization, the multiplier method, R.A.M. 36, John Wiley-Masson, 1994. Zbl0937.93003MR1359765
  8. [8] V. Komornik, D.L. Russel and B.-Y. Zhang: Control and stabilization of the Korteweg-de Vries equation on a periodic domain, submitted to J. Differential Equations. 
  9. [9] D.J. Korteweg and G. de Vries: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., 5, 39, 1895, 422-423. Zbl26.0881.02JFM26.0881.02
  10. [10] G. Lebeau: Contrôle de l'équation de Schrödinger, J. Math. Pures Appl., 71, 1992, 267-291. Zbl0838.35013MR1172452
  11. [11] J.L. Lions: Contrôlabilité exacte de systèmes distribués, C.R. Acad. Sci. Paris, 302, 1986, 471-475. Zbl0589.49022MR838402
  12. [12] J.L. Lions: Contrôlabilité exacte, Perturbations et Stabilisation de Systèmes Distribués, Tome 1, Contrôlabilité exacte, Collection de recherche en mathématiques appliquées, 8, Masson, Paris, 1988. Zbl0653.93002MR953547
  13. [13] J.L. Lions: Exact controllability, stabilizability, and perturbations for distributed systems, Siam Rev., 30, 1988, 1-68. Zbl0644.49028MR931277
  14. [14] E. Machtyngier: Exact controllability for the Schrödinger equation, SIAM J. Control Optim., 32, 1994, 24-34. Zbl0795.93018MR1255957
  15. [15] A. Pazy: Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983. Zbl0516.47023MR710486
  16. [16] D.L. Russel and B-Y. Zhang: Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain, SIAM J. Control Optim., 31, 1993, 659-673. Zbl0771.93073MR1214759
  17. [17] J.C. Saut and R. Temam: Remarks on the Korteweg-De Vries equation, Israel. Math., 24, 1976, 78-87. Zbl0334.35062MR454425
  18. [18] J. Simon: Compact sets in the space Lp(0,T, B), Annali di Matematica pura ed applicata (IV), vol. CXLVI, 1987, 65-96. Zbl0629.46031MR916688
  19. [19] K. Yosida: Functional Analysis, Springer-Verlag, Berlin Heidelberg New York, 1978. Zbl0365.46001MR500055
  20. [20] B.-Y. Zhang: Some results for nonlinear dispersive wave equations with applications to control, Ph. D. thesis, University of Wisconsin, Madison, June 1990. 

Citations in EuDML Documents

top
  1. T. Horsin, On the controllability of the burger equation
  2. Felipe Linares, Jaime H. Ortega, On the controllability and stabilization of the linearized Benjamin-Ono equation
  3. Felipe Linares, Jaime H. Ortega, On the controllability and stabilization of the linearized Benjamin-Ono equation
  4. Ademir Fernando Pazoto, Unique continuation and decay for the Korteweg-de Vries equation with localized damping
  5. Lionel Rosier, Control of the surface of a fluid by a wavemaker
  6. Ademir Fernando Pazoto, Unique continuation and decay for the Korteweg-de Vries equation with localized damping
  7. Lionel Rosier, Control of the surface of a fluid by a wavemaker
  8. Carlos F. Vasconcellos, Patricia N. da Silva, Stabilization of the Kawahara equation with localized damping
  9. Carlos F. Vasconcellos, Patricia N. da Silva, Stabilization of the Kawahara equation with localized damping
  10. Eugene Kramer, Ivonne Rivas, Bing-Yu Zhang, Well-posedness of a class of non-homogeneous boundary value problems of the Korteweg-de Vries equation on a finite domain

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.