An analysis of electrical impedance tomography with applications to Tikhonov regularization

Bangti Jin; Peter Maass

ESAIM: Control, Optimisation and Calculus of Variations (2012)

  • Volume: 18, Issue: 4, page 1027-1048
  • ISSN: 1292-8119

Abstract

top
This paper analyzes the continuum model/complete electrode model in the electrical impedance tomography inverse problem of determining the conductivity parameter from boundary measurements. The continuity and differentiability of the forward operator with respect to the conductivity parameter in Lp-norms are proved. These analytical results are applied to several popular regularization formulations, which incorporate a priori information of smoothness/sparsity on the inhomogeneity through Tikhonov regularization, for both linearized and nonlinear models. Some important properties, e.g., existence, stability, consistency and convergence rates, are established. This provides some theoretical justifications of their practical usage.

How to cite

top

Jin, Bangti, and Maass, Peter. "An analysis of electrical impedance tomography with applications to Tikhonov regularization." ESAIM: Control, Optimisation and Calculus of Variations 18.4 (2012): 1027-1048. <http://eudml.org/doc/272908>.

@article{Jin2012,
abstract = {This paper analyzes the continuum model/complete electrode model in the electrical impedance tomography inverse problem of determining the conductivity parameter from boundary measurements. The continuity and differentiability of the forward operator with respect to the conductivity parameter in Lp-norms are proved. These analytical results are applied to several popular regularization formulations, which incorporate a priori information of smoothness/sparsity on the inhomogeneity through Tikhonov regularization, for both linearized and nonlinear models. Some important properties, e.g., existence, stability, consistency and convergence rates, are established. This provides some theoretical justifications of their practical usage.},
author = {Jin, Bangti, Maass, Peter},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {electrical impedance tomography; Tikhonov regularization; convergence rate},
language = {eng},
number = {4},
pages = {1027-1048},
publisher = {EDP-Sciences},
title = {An analysis of electrical impedance tomography with applications to Tikhonov regularization},
url = {http://eudml.org/doc/272908},
volume = {18},
year = {2012},
}

TY - JOUR
AU - Jin, Bangti
AU - Maass, Peter
TI - An analysis of electrical impedance tomography with applications to Tikhonov regularization
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2012
PB - EDP-Sciences
VL - 18
IS - 4
SP - 1027
EP - 1048
AB - This paper analyzes the continuum model/complete electrode model in the electrical impedance tomography inverse problem of determining the conductivity parameter from boundary measurements. The continuity and differentiability of the forward operator with respect to the conductivity parameter in Lp-norms are proved. These analytical results are applied to several popular regularization formulations, which incorporate a priori information of smoothness/sparsity on the inhomogeneity through Tikhonov regularization, for both linearized and nonlinear models. Some important properties, e.g., existence, stability, consistency and convergence rates, are established. This provides some theoretical justifications of their practical usage.
LA - eng
KW - electrical impedance tomography; Tikhonov regularization; convergence rate
UR - http://eudml.org/doc/272908
ER -

References

top
  1. [1] G. Alessandrini, Open issues of stability for the inverse conductivity problem. Journal Inverse Ill-Posed Problems15 (2007) 451–460. Zbl1221.35443MR2367859
  2. [2] K. Astala and L. Päivärinta, Calderón’s inverse conductivity problem in the plane. Ann. of Math. (2) 163 (2006) 265–299. Zbl1111.35004MR2195135
  3. [3] K. Astala, D. Faraco, and L. Székelyhidi Jr., Convex integration and the Lp theory of elliptic equations. Ann. Scuola Norm. Super. Pisa Cl. Sci. (5) 7 (2008) 1–50. Zbl1164.30014MR2413671
  4. [4] R.H. Bayford, Bioimpedance tomography (electrical impedance tomography). Ann. Rev. Biomed. Eng.8 (2006) 63–91. 
  5. [5] T. Bonesky, K.S. Kazimierski, P. Maass, F. Schöpfer and T. Schuster, Minimization of Tikhonov functionals in Banach spaces. Abstr. Appl. Anal. (2008) 19 pages. Zbl05313168MR2393115
  6. [6] K. Bredies and D.A. Lorenz, Regularization with non-convex separable constraints. Inverse Problems 25 (2009) 085011. Zbl1180.65068MR2529201
  7. [7] L.M. Bregman, The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys.7 (1967) 200–217. Zbl0186.23807MR215617
  8. [8] M. Burger and S. Osher, Convergence rates of convex variational regularization. Inverse Problems20 (2004) 1411–1420. Zbl1068.65085MR2109126
  9. [9] A.-P. Calderón, On an inverse boundary value problem. In Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980). Soc. Brasil. Mat., Rio de Janeiro (1980) 65–73. Zbl1182.35230MR590275
  10. [10] M. Cheney, D. Isaacson, J.C. Newell, S. Simske and J. Goble, NOSER : An algorithm for solving the inverse conductivity problem. Int. J. Imag. Syst. Tech.2 (1990) 66–75. 
  11. [11] M. Cheney, D. Isaacson and J.C. Newell, Electrical impedance tomography. SIAM Rev.41 (1999) 85–101. Zbl0927.35130MR1669729
  12. [12] K.-S. Cheng, D. Isaacson, J.C. Newell and D.G. Gisser, Electrode models for electric current computed tomography. IEEE Trans. Biomed. Eng.36 (1989) 918–924. 
  13. [13] E.T. Chung, T.F. Chan and X.-C. Tai, Electrical impedance tomography using level set representation and total variational regularization. J. Comput. Phys.205 (2005) 357–372. Zbl1072.65143MR2132313
  14. [14] I. Daubechies, M. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math.57 (2004) 1413–1457. Zbl1077.65055MR2077704
  15. [15] T. Dierkes, O. Dorn, F. Natterer, V. Palamodov and H. Sielschott, Fréchet derivatives for some bilinear inverse problems. SIAM J. Appl. Math.62 (2002) 2092–2113. Zbl1010.35115MR1918308
  16. [16] D. Dobson, Convergence of a reconstruction method for the inverse conductivity problem. SIAM J. Appl. Math.52 (1992) 442–458. Zbl0747.35051MR1154782
  17. [17] D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theor.52 (2006) 1289–1306. Zbl1288.94016MR2241189
  18. [18] H. Egger and M. Schlottbom, Analysis and regularization of problems in diffuse optical tomography. SIAM J. Math. Anal.42 (2010) 1934–1948. Zbl1219.35355MR2684305
  19. [19] H.W. Engl, K. Kunisch and A. Neubauer, Convergence rates for Tikhonov regularisation of nonlinear ill-posed problems. Inverse Problems5 (1989) 523–540. Zbl0695.65037MR1009037
  20. [20] H.W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems. Kluwer Academic, Dordrecht (1996). Zbl0859.65054MR1408680
  21. [21] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992). Zbl0804.28001MR1158660
  22. [22] T. Gallouet and A. Monier, On the regularity of solutions to elliptic equations. Rend. Mat. Appl. (7) 19 (1999) 471–488. Zbl0961.35036MR1789483
  23. [23] M. Gehre, T. Kluth, A. Lipponen, B. Jin, A. Seppänen, J. Kaipio and P. Maass, Sparsity reconstruction in electrical impedance tomography : an experimental evaluation. J. Comput. Appl. Math. (2011), in press, DOI : 10.1016/j.cam.2011.09.035. Zbl1251.78008MR2876676
  24. [24] M. Grasmair, M. Haltmeier and O. Scherzer, Sparse regularization with lq penalty term. Inverse Problems 24 (2008) 055020. Zbl1157.65033MR2438955
  25. [25] K. Gröger, A W1,p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations. Math. Ann.283 (1989) 679–687. Zbl0646.35024MR990595
  26. [26] B. Harrach and J.K. Seo, Exact shape-reconstruction by one-step linearization in electrical impedance tomography. SIAM J. Math. Anal.42 (2010) 1505–1518. Zbl1215.35167MR2679585
  27. [27] B. Hofmann and M. Yamamoto, On the interplay of source conditions and variational inequalities for nonlinear ill-posed problems. Appl. Anal.89 (2010) 1705–1727. Zbl1207.47065MR2683677
  28. [28] B. Hofmann, B. Kaltenbacher, C. Poeschl and O. Scherzer, A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators. Inverse Problems23 (2007) 987–1010. Zbl1131.65046MR2329928
  29. [29] N. Hyvönen, Complete electrode model of electrical impedance tomography : approximation properties and characterization of inclusions. SIAM J. Appl. Math.64 (2004) 902–931. Zbl1059.35168MR2068447
  30. [30] M. Ikehata and S. Siltanen, Electrical impedance tomography and Mittag-Leffler’s function. Inverse Problems20 (2004) 1325–1348. Zbl1074.35087MR2087994
  31. [31] O.Y. Imanuvilov, G. Uhlmann and M. Yamamoto, The Calderón problem with partial data in two dimensions. J. Amer. Math. Soc.23 (2010) 655–691. Zbl1201.35183MR2629983
  32. [32] D. Isaacson, J.L. Mueller, J.C. Newell and S. Siltanen, Reconstructions of chest phantoms by the D-bar method for electrical impedance tomography. IEEE Trans. Med. Imag.23 (2004) 821–828. 
  33. [33] K. Ito, K. Kunisch and Z. Li, Level-set function approach to an inverse interface problem. Inverse Problems17 (2001) 1225–1242. Zbl0986.35130MR1862188
  34. [34] K. Ito, B. Jin and T. Takeuchi, A regularization parameter for nonsmooth Tikhonov regularization. SIAM J. Sci. Comput.33 (2011) 1415–1438. Zbl1235.65054MR2813246
  35. [35] B. Jin, Y. Zhao and J. Zou, Iterative parameter choice by discrepancy principle. IMA J. Numer. Anal. (2011), in press. Zbl1261.65052MR2991843
  36. [36] B. Jin, Y. Zhao and P. Maass, A reconstruction algorithm for electrical impedance tomography based on sparsity regularization. Internat. J. Numer. Methods Engrg. (2011), DOI : 10.2002/nme.3247. Zbl1242.78016
  37. [37] J.P. Kaipio, V. Kolehmainen, E. Somersalo and M. Vauhkonen, Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography. Inverse Problems16 (2000) 1487–1522. Zbl1044.78513MR1800606
  38. [38] B. Kaltenbacher and B. Hofmann, Convergence rates for the iteratively regularized Gauss-Newton method in Banach spaces. Inverse Problems 26 (2010) 035007. Zbl1204.65060MR2594377
  39. [39] A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems. Oxford University Press, Oxford (2008). Zbl1222.35001MR2378253
  40. [40] K. Knudsen, M. Lassas, J.L. Mueller and S. Siltanen, Regularized D-bar method for the inverse conductivity problem. IPI3 (2009) 599–624. Zbl1184.35314MR2557921
  41. [41] V. Kolehmain, A. Voutilainen and J.P. Kaipio, Estimation of nonstionary region boundaries in EIT-state estimation approach. Inverse Problems17 (2001) 1937–1956. Zbl0991.35109MR1872930
  42. [42] A. Lechleiter, A regularization technique for the factorization method. Inverse Problems22 (2006) 1605–1625. Zbl1106.35136MR2261257
  43. [43] A. Lechleiter and A. Rieder, Newton regularizations for impedance tomography : a numerical study. Inverse Problems22 (2006) 1967–1987. Zbl1109.65100MR2277524
  44. [44] A. Lechleiter and A. Rieder, Newton regularizations for impedance tomography : convergence by local injectivity. Inverse Problems, 24 (2008) 065009. Zbl1152.35516MR2456956
  45. [45] W.R.B. Lionheart, EIT reconstruction algorithms : pitfalls, challenges and recent developments. Physiol. Meas.25 (2004) 125–142. 
  46. [46] D.A. Lorenz, Convergence rates and source conditions for Tikhonov regularization with sparsity constraints. Journal Inverse Ill-Posed Problems16 (2008) 463–478. Zbl1161.65041MR2442066
  47. [47] M. Lukaschewitsch, P. Maass and M. Pidcock, Tikhonov regularization for electrical impedance tomography on unbounded domains. Inverse Problems19 (2003) 585–610. Zbl1034.65043MR1984879
  48. [48] N.G. Meyers, An Lp-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scuola Norm. Sup. Pisa (3) 17 (1963) 189–206. Zbl0127.31904MR159110
  49. [49] A. Neubauer, When do Sobolev spaces form a Hilbert scale? Proc. Amer. Math. Soc.103 (1988) 557–562. Zbl0665.46029MR943084
  50. [50] E. Resmerita, Regularization of ill-posed problems in Banach spaces : convergence rates. Inverse Problems21 (2005) 1303–1314. Zbl1082.65055MR2158110
  51. [51] L. Rondi, On the regularization of the inverse conductivity problem with discontinuous conductivities. IPI2 (2008) 397–409. Zbl1180.35572MR2424823
  52. [52] L. Rondi and F. Santosa, Enhanced electrical impedance tomography via the Mumford-Shah functional. ESAIM Control Optim. Calc. Var.6 (2001) 517–538. Zbl0989.35136MR1849414
  53. [53] E. Somersalo, M. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography. SIAM J. Appl. Math.52 (1992) 1023–1040. Zbl0759.35055MR1174044
  54. [54] A.N. Tikhonov and V.Y. Arsenin, Solutions of Ill-Posed Problems. John Wiley, New York (1977). Zbl0354.65028MR455365
  55. [55] G. Uhlmann, Commentary on Calderón’s paper (29), on an inverse boundary value problem, in Selected papers of Alberto P. Calderón. Amer. Math. Soc., Providence, RI (2008) 623–636. Zbl1140.01021MR2435340
  56. [56] A. Wexler, B. Fry and M.R. Neuman, Impedance-computed tomography algorithm and system. Appl. Opt.24 (1985) 3985–3992. 
  57. [57] T.J. Yorkey, J.G. Webster and W.J. Tompkins, Comparing reconstruction algorithms for electrical impedance tomography. IEEE Trans. Biomed. Eng.34 (1987) 843–852. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.