An analysis of electrical impedance tomography with applications to Tikhonov regularization
ESAIM: Control, Optimisation and Calculus of Variations (2012)
- Volume: 18, Issue: 4, page 1027-1048
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] G. Alessandrini, Open issues of stability for the inverse conductivity problem. Journal Inverse Ill-Posed Problems15 (2007) 451–460. Zbl1221.35443MR2367859
- [2] K. Astala and L. Päivärinta, Calderón’s inverse conductivity problem in the plane. Ann. of Math. (2) 163 (2006) 265–299. Zbl1111.35004MR2195135
- [3] K. Astala, D. Faraco, and L. Székelyhidi Jr., Convex integration and the Lp theory of elliptic equations. Ann. Scuola Norm. Super. Pisa Cl. Sci. (5) 7 (2008) 1–50. Zbl1164.30014MR2413671
- [4] R.H. Bayford, Bioimpedance tomography (electrical impedance tomography). Ann. Rev. Biomed. Eng.8 (2006) 63–91.
- [5] T. Bonesky, K.S. Kazimierski, P. Maass, F. Schöpfer and T. Schuster, Minimization of Tikhonov functionals in Banach spaces. Abstr. Appl. Anal. (2008) 19 pages. Zbl05313168MR2393115
- [6] K. Bredies and D.A. Lorenz, Regularization with non-convex separable constraints. Inverse Problems 25 (2009) 085011. Zbl1180.65068MR2529201
- [7] L.M. Bregman, The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys.7 (1967) 200–217. Zbl0186.23807MR215617
- [8] M. Burger and S. Osher, Convergence rates of convex variational regularization. Inverse Problems20 (2004) 1411–1420. Zbl1068.65085MR2109126
- [9] A.-P. Calderón, On an inverse boundary value problem. In Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980). Soc. Brasil. Mat., Rio de Janeiro (1980) 65–73. Zbl1182.35230MR590275
- [10] M. Cheney, D. Isaacson, J.C. Newell, S. Simske and J. Goble, NOSER : An algorithm for solving the inverse conductivity problem. Int. J. Imag. Syst. Tech.2 (1990) 66–75.
- [11] M. Cheney, D. Isaacson and J.C. Newell, Electrical impedance tomography. SIAM Rev.41 (1999) 85–101. Zbl0927.35130MR1669729
- [12] K.-S. Cheng, D. Isaacson, J.C. Newell and D.G. Gisser, Electrode models for electric current computed tomography. IEEE Trans. Biomed. Eng.36 (1989) 918–924.
- [13] E.T. Chung, T.F. Chan and X.-C. Tai, Electrical impedance tomography using level set representation and total variational regularization. J. Comput. Phys.205 (2005) 357–372. Zbl1072.65143MR2132313
- [14] I. Daubechies, M. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math.57 (2004) 1413–1457. Zbl1077.65055MR2077704
- [15] T. Dierkes, O. Dorn, F. Natterer, V. Palamodov and H. Sielschott, Fréchet derivatives for some bilinear inverse problems. SIAM J. Appl. Math.62 (2002) 2092–2113. Zbl1010.35115MR1918308
- [16] D. Dobson, Convergence of a reconstruction method for the inverse conductivity problem. SIAM J. Appl. Math.52 (1992) 442–458. Zbl0747.35051MR1154782
- [17] D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theor.52 (2006) 1289–1306. Zbl1288.94016MR2241189
- [18] H. Egger and M. Schlottbom, Analysis and regularization of problems in diffuse optical tomography. SIAM J. Math. Anal.42 (2010) 1934–1948. Zbl1219.35355MR2684305
- [19] H.W. Engl, K. Kunisch and A. Neubauer, Convergence rates for Tikhonov regularisation of nonlinear ill-posed problems. Inverse Problems5 (1989) 523–540. Zbl0695.65037MR1009037
- [20] H.W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems. Kluwer Academic, Dordrecht (1996). Zbl0859.65054MR1408680
- [21] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992). Zbl0804.28001MR1158660
- [22] T. Gallouet and A. Monier, On the regularity of solutions to elliptic equations. Rend. Mat. Appl. (7) 19 (1999) 471–488. Zbl0961.35036MR1789483
- [23] M. Gehre, T. Kluth, A. Lipponen, B. Jin, A. Seppänen, J. Kaipio and P. Maass, Sparsity reconstruction in electrical impedance tomography : an experimental evaluation. J. Comput. Appl. Math. (2011), in press, DOI : 10.1016/j.cam.2011.09.035. Zbl1251.78008MR2876676
- [24] M. Grasmair, M. Haltmeier and O. Scherzer, Sparse regularization with lq penalty term. Inverse Problems 24 (2008) 055020. Zbl1157.65033MR2438955
- [25] K. Gröger, A W1,p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations. Math. Ann.283 (1989) 679–687. Zbl0646.35024MR990595
- [26] B. Harrach and J.K. Seo, Exact shape-reconstruction by one-step linearization in electrical impedance tomography. SIAM J. Math. Anal.42 (2010) 1505–1518. Zbl1215.35167MR2679585
- [27] B. Hofmann and M. Yamamoto, On the interplay of source conditions and variational inequalities for nonlinear ill-posed problems. Appl. Anal.89 (2010) 1705–1727. Zbl1207.47065MR2683677
- [28] B. Hofmann, B. Kaltenbacher, C. Poeschl and O. Scherzer, A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators. Inverse Problems23 (2007) 987–1010. Zbl1131.65046MR2329928
- [29] N. Hyvönen, Complete electrode model of electrical impedance tomography : approximation properties and characterization of inclusions. SIAM J. Appl. Math.64 (2004) 902–931. Zbl1059.35168MR2068447
- [30] M. Ikehata and S. Siltanen, Electrical impedance tomography and Mittag-Leffler’s function. Inverse Problems20 (2004) 1325–1348. Zbl1074.35087MR2087994
- [31] O.Y. Imanuvilov, G. Uhlmann and M. Yamamoto, The Calderón problem with partial data in two dimensions. J. Amer. Math. Soc.23 (2010) 655–691. Zbl1201.35183MR2629983
- [32] D. Isaacson, J.L. Mueller, J.C. Newell and S. Siltanen, Reconstructions of chest phantoms by the D-bar method for electrical impedance tomography. IEEE Trans. Med. Imag.23 (2004) 821–828.
- [33] K. Ito, K. Kunisch and Z. Li, Level-set function approach to an inverse interface problem. Inverse Problems17 (2001) 1225–1242. Zbl0986.35130MR1862188
- [34] K. Ito, B. Jin and T. Takeuchi, A regularization parameter for nonsmooth Tikhonov regularization. SIAM J. Sci. Comput.33 (2011) 1415–1438. Zbl1235.65054MR2813246
- [35] B. Jin, Y. Zhao and J. Zou, Iterative parameter choice by discrepancy principle. IMA J. Numer. Anal. (2011), in press. Zbl1261.65052MR2991843
- [36] B. Jin, Y. Zhao and P. Maass, A reconstruction algorithm for electrical impedance tomography based on sparsity regularization. Internat. J. Numer. Methods Engrg. (2011), DOI : 10.2002/nme.3247. Zbl1242.78016
- [37] J.P. Kaipio, V. Kolehmainen, E. Somersalo and M. Vauhkonen, Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography. Inverse Problems16 (2000) 1487–1522. Zbl1044.78513MR1800606
- [38] B. Kaltenbacher and B. Hofmann, Convergence rates for the iteratively regularized Gauss-Newton method in Banach spaces. Inverse Problems 26 (2010) 035007. Zbl1204.65060MR2594377
- [39] A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems. Oxford University Press, Oxford (2008). Zbl1222.35001MR2378253
- [40] K. Knudsen, M. Lassas, J.L. Mueller and S. Siltanen, Regularized D-bar method for the inverse conductivity problem. IPI3 (2009) 599–624. Zbl1184.35314MR2557921
- [41] V. Kolehmain, A. Voutilainen and J.P. Kaipio, Estimation of nonstionary region boundaries in EIT-state estimation approach. Inverse Problems17 (2001) 1937–1956. Zbl0991.35109MR1872930
- [42] A. Lechleiter, A regularization technique for the factorization method. Inverse Problems22 (2006) 1605–1625. Zbl1106.35136MR2261257
- [43] A. Lechleiter and A. Rieder, Newton regularizations for impedance tomography : a numerical study. Inverse Problems22 (2006) 1967–1987. Zbl1109.65100MR2277524
- [44] A. Lechleiter and A. Rieder, Newton regularizations for impedance tomography : convergence by local injectivity. Inverse Problems, 24 (2008) 065009. Zbl1152.35516MR2456956
- [45] W.R.B. Lionheart, EIT reconstruction algorithms : pitfalls, challenges and recent developments. Physiol. Meas.25 (2004) 125–142.
- [46] D.A. Lorenz, Convergence rates and source conditions for Tikhonov regularization with sparsity constraints. Journal Inverse Ill-Posed Problems16 (2008) 463–478. Zbl1161.65041MR2442066
- [47] M. Lukaschewitsch, P. Maass and M. Pidcock, Tikhonov regularization for electrical impedance tomography on unbounded domains. Inverse Problems19 (2003) 585–610. Zbl1034.65043MR1984879
- [48] N.G. Meyers, An Lp-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scuola Norm. Sup. Pisa (3) 17 (1963) 189–206. Zbl0127.31904MR159110
- [49] A. Neubauer, When do Sobolev spaces form a Hilbert scale? Proc. Amer. Math. Soc.103 (1988) 557–562. Zbl0665.46029MR943084
- [50] E. Resmerita, Regularization of ill-posed problems in Banach spaces : convergence rates. Inverse Problems21 (2005) 1303–1314. Zbl1082.65055MR2158110
- [51] L. Rondi, On the regularization of the inverse conductivity problem with discontinuous conductivities. IPI2 (2008) 397–409. Zbl1180.35572MR2424823
- [52] L. Rondi and F. Santosa, Enhanced electrical impedance tomography via the Mumford-Shah functional. ESAIM Control Optim. Calc. Var.6 (2001) 517–538. Zbl0989.35136MR1849414
- [53] E. Somersalo, M. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography. SIAM J. Appl. Math.52 (1992) 1023–1040. Zbl0759.35055MR1174044
- [54] A.N. Tikhonov and V.Y. Arsenin, Solutions of Ill-Posed Problems. John Wiley, New York (1977). Zbl0354.65028MR455365
- [55] G. Uhlmann, Commentary on Calderón’s paper (29), on an inverse boundary value problem, in Selected papers of Alberto P. Calderón. Amer. Math. Soc., Providence, RI (2008) 623–636. Zbl1140.01021MR2435340
- [56] A. Wexler, B. Fry and M.R. Neuman, Impedance-computed tomography algorithm and system. Appl. Opt.24 (1985) 3985–3992.
- [57] T.J. Yorkey, J.G. Webster and W.J. Tompkins, Comparing reconstruction algorithms for electrical impedance tomography. IEEE Trans. Biomed. Eng.34 (1987) 843–852.