Relaxation in BV of integrals with superlinear growth

Parth Soneji

ESAIM: Control, Optimisation and Calculus of Variations (2014)

  • Volume: 20, Issue: 4, page 1078-1122
  • ISSN: 1292-8119

Abstract

top
We study properties of the functional loc ( u , Ω ) : = inf ( u j ) lim inf j Ω f ( u j ) x ( u j ) W loc 1 , r Ω , u j u in Ω , , F loc ( u,Ω ) : = inf ( u j ) lim inf j → ∞ ∫ Ω f ( ∇ u j ) d x , whereu ∈ BV(Ω;RN), and f:RN × n → R is continuous and satisfies 0 ≤ f(ξ) ≤ L(1 + | ξ | r). For r ∈ [1,2), assuming f has linear growth in certain rank-one directions, we combine a result of [A. Braides and A. Coscia, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 737–756] with a new technique involving mollification to prove an upper bound for Floc. Then, for r [ 1 , n n - 1 ) r ∈ [ 1 , n n − 1 ) , we prove that Flocsatisfies the lower bound loc ( u , Ω ) Ω f ( u ( x ) ) x + Ω D s u | D s u | | D s u | , F loc ( u,Ω ) ≥ ∫ Ω f ( ∇ u ( x ) ) d x + ∫ Ω f ∞ D s u | D s u | | D s u | , providedf is quasiconvex, and the recession function f∞(defined as f ( ξ ) : = lim ¯ t f ( t ξ ) / t f∞(ξ):=limt→∞f(tξ)/t) is assumed to be finite in certain rank-one directions. The proof of this result involves adapting work by [Kristensen,Calc. Var. Partial Differ. Eqs. 7 (1998) 249–261], and [Ambrosio and Dal Maso, J. Funct. Anal. 109 (1992) 76–97], and applying a non-standard blow-up technique that exploits fine properties of BV maps. It also makes use of the fact that Floc has a measure representation, which is proved in the appendix using a method of [Fonseca and Malý, Annal. Inst. Henri Poincaré Anal. Non Linéaire 14 (1997) 309–338].

How to cite

top

Soneji, Parth. "Relaxation in BV of integrals with superlinear growth." ESAIM: Control, Optimisation and Calculus of Variations 20.4 (2014): 1078-1122. <http://eudml.org/doc/272909>.

@article{Soneji2014,
abstract = {We study properties of the functional\begin\{eqnarray\} \mathcal \{F\}\_\{\{\rm loc\}\}(u,\Omega ):= \inf \_\{(u\_\{j\})\}\bigg \lbrace \liminf \_\{j\rightarrow \infty \}\int \_\{\Omega \}f(\nabla u\_\{j\})x\, \left| \!\!\begin\{array\}\{rl\} & (u\_\{j\})\subset W\_\{\{\rm loc\}\}^\{1,r\}\left(\Omega , \right) \\ & u\_\{j\}u\,\,\textrm \{in \}\left(\Omega , \right) \end\{array\} \right. \bigg \rbrace , \end\{eqnarray\}F loc ( u,Ω ) : = inf ( u j ) lim inf j → ∞ ∫ Ω f ( ∇ u j ) d x , whereu ∈ BV(Ω;RN), and f:RN × n → R is continuous and satisfies 0 ≤ f(ξ) ≤ L(1 + | ξ | r). For r ∈ [1,2), assuming f has linear growth in certain rank-one directions, we combine a result of [A. Braides and A. Coscia, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 737–756] with a new technique involving mollification to prove an upper bound for Floc. Then, for $r\in [1,\frac\{n\}\{n-1\})$ r ∈ [ 1 , n n − 1 ) , we prove that Flocsatisfies the lower bound\begin\{equation*\} \_\{\{\rm loc\}\}(u,\Omega ) \ge \int \_\{\Omega \} f(\nabla u (x))x + \int \_\{\Omega \}\bigg (\frac\{D^\{s\}u\}\{|D^\{s\}u|\}\bigg )\,|D^\{s\}u|, \end\{equation*\}F loc ( u,Ω ) ≥ ∫ Ω f ( ∇ u ( x ) ) d x + ∫ Ω f ∞ D s u | D s u | | D s u | , providedf is quasiconvex, and the recession function f∞(defined as $ f^\{\infty \}(\xi ):= \overline\{\lim \}_\{t\rightarrow \infty \}f(t\xi )/t$f∞(ξ):=limt→∞f(tξ)/t) is assumed to be finite in certain rank-one directions. The proof of this result involves adapting work by [Kristensen,Calc. Var. Partial Differ. Eqs. 7 (1998) 249–261], and [Ambrosio and Dal Maso, J. Funct. Anal. 109 (1992) 76–97], and applying a non-standard blow-up technique that exploits fine properties of BV maps. It also makes use of the fact that Floc has a measure representation, which is proved in the appendix using a method of [Fonseca and Malý, Annal. Inst. Henri Poincaré Anal. Non Linéaire 14 (1997) 309–338].},
author = {Soneji, Parth},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {quasiconvexity; lower semicontinuity; relaxation; BV; lower semi-continuity; variation integral; bounded variation; quasicovexity},
language = {eng},
number = {4},
pages = {1078-1122},
publisher = {EDP-Sciences},
title = {Relaxation in BV of integrals with superlinear growth},
url = {http://eudml.org/doc/272909},
volume = {20},
year = {2014},
}

TY - JOUR
AU - Soneji, Parth
TI - Relaxation in BV of integrals with superlinear growth
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2014
PB - EDP-Sciences
VL - 20
IS - 4
SP - 1078
EP - 1122
AB - We study properties of the functional\begin{eqnarray} \mathcal {F}_{{\rm loc}}(u,\Omega ):= \inf _{(u_{j})}\bigg \lbrace \liminf _{j\rightarrow \infty }\int _{\Omega }f(\nabla u_{j})x\, \left| \!\!\begin{array}{rl} & (u_{j})\subset W_{{\rm loc}}^{1,r}\left(\Omega , \right) \\ & u_{j}u\,\,\textrm {in }\left(\Omega , \right) \end{array} \right. \bigg \rbrace , \end{eqnarray}F loc ( u,Ω ) : = inf ( u j ) lim inf j → ∞ ∫ Ω f ( ∇ u j ) d x , whereu ∈ BV(Ω;RN), and f:RN × n → R is continuous and satisfies 0 ≤ f(ξ) ≤ L(1 + | ξ | r). For r ∈ [1,2), assuming f has linear growth in certain rank-one directions, we combine a result of [A. Braides and A. Coscia, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 737–756] with a new technique involving mollification to prove an upper bound for Floc. Then, for $r\in [1,\frac{n}{n-1})$ r ∈ [ 1 , n n − 1 ) , we prove that Flocsatisfies the lower bound\begin{equation*} _{{\rm loc}}(u,\Omega ) \ge \int _{\Omega } f(\nabla u (x))x + \int _{\Omega }\bigg (\frac{D^{s}u}{|D^{s}u|}\bigg )\,|D^{s}u|, \end{equation*}F loc ( u,Ω ) ≥ ∫ Ω f ( ∇ u ( x ) ) d x + ∫ Ω f ∞ D s u | D s u | | D s u | , providedf is quasiconvex, and the recession function f∞(defined as $ f^{\infty }(\xi ):= \overline{\lim }_{t\rightarrow \infty }f(t\xi )/t$f∞(ξ):=limt→∞f(tξ)/t) is assumed to be finite in certain rank-one directions. The proof of this result involves adapting work by [Kristensen,Calc. Var. Partial Differ. Eqs. 7 (1998) 249–261], and [Ambrosio and Dal Maso, J. Funct. Anal. 109 (1992) 76–97], and applying a non-standard blow-up technique that exploits fine properties of BV maps. It also makes use of the fact that Floc has a measure representation, which is proved in the appendix using a method of [Fonseca and Malý, Annal. Inst. Henri Poincaré Anal. Non Linéaire 14 (1997) 309–338].
LA - eng
KW - quasiconvexity; lower semicontinuity; relaxation; BV; lower semi-continuity; variation integral; bounded variation; quasicovexity
UR - http://eudml.org/doc/272909
ER -

References

top
  1. [1] E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal.86 (1984) 125–145. Zbl0565.49010MR751305
  2. [2] G. Alberti, Rank one property for derivatives of functions with bounded variation. Proc. Roy. Soc. Edinburgh Sect. A123 (1993) 239–274. Zbl0791.26008MR1215412
  3. [3] G. Alberti and L. Ambrosio, A geometrical approach to monotone functions in Rn, Math. Z.230 (1999) 259–316. Zbl0934.49025MR1676726
  4. [4] M. Amar and V. De Cicco, Quasi-polyhedral approximation of BV-functions. Ric. Mat. 54 (2005) 485–490 (2006). Zbl1139.49015MR2289495
  5. [5] L. Ambrosio, A compactness theorem for a new class of functions of bounded variation. Boll. Un. Mat. Ital. B3 (1989) 857–881. Zbl0767.49001MR1032614
  6. [6] L. Ambrosio, Existence theory for a new class of variational problems. Arch. Ration. Mech. Anal.111 (1990) 291–322. Zbl0711.49064MR1068374
  7. [7] L. Ambrosio, On the lower semicontinuity of quasiconvex integrals in SBV(Ω,Rk). Nonlinear Anal.23 (1994) 405–425. Zbl0817.49017MR1291580
  8. [8] L. Ambrosio and G. Dal Maso, On the relaxation in BV(Ω;Rm) of quasi-convex integrals. J. Funct. Anal.109 (1992) 76–97. Zbl0769.49009MR1183605
  9. [9] L. Ambrosio, N. Fusco and J. Hutchinson, Higher integrability of the gradient and dimension of the singular set for minimisers of the Mumford-Shah functional. Calc. Var. Partial Differ. Eq.16 (2003) 187–215. Zbl1047.49015MR1956854
  10. [10] L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxf. Math. Monogr. The Clarendon Press Oxford University Press, New York (2000). Zbl0957.49001MR1857292
  11. [11] L. Ambrosio, S. Mortola, and V. Tortorelli, Functionals with linear growth defined on vector valued BV functions. J. Math. Pures Appl.70 (1991) 269–323. Zbl0662.49007MR1113814
  12. [12] L. Ambrosio and D. Pallara, Integral representations of relaxed functionals on BV(Rn,Rk) and polyhedral approximation. Indiana Univ. Math. J.42 (1993) 295–321. Zbl0790.49013MR1237049
  13. [13] P. Aviles and Y. Giga, Variational integrals on mappings of bounded variation and their lower semicontinuity. Arch. Ration. Mech. Anal.115 (1991) 201–255. Zbl0737.49011MR1106293
  14. [14] J. Ball and F. Murat, W1,p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal.58 (1984) 225–253. Zbl0549.46019MR759098
  15. [15] G. Bouchitté, I. Fonseca, and J. Malý, The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent. Proc. Roy. Soc. Edinburgh Sect. A128 (1998) 463–479. Zbl0907.49008MR1632814
  16. [16] A. Braides and A. Coscia, The interaction between bulk energy and surface energy in multiple integrals. Proc. Roy. Soc. Edinburgh Sect. A124 (1994) 737–756. Zbl0810.49015MR1298590
  17. [17] G. Buttazzo, Semicontinuity, relaxation and integral representation in the calculus of variations. Pitman Res. Notes in Math. Ser., vol. 207. Longman Scientific & Technical, Harlow (1989). Zbl0669.49005MR1020296
  18. [18] L. Carbone and R. De Arcangelis, Further results on Γ-convergence and lower semicontinuity of integral functionals depending on vector-valued functions. Ric. Mat.39 (1990) 99–129. Zbl0735.49008MR1101308
  19. [19] G. Dal Maso, Integral representation on BV(Ω) of Γ-limits of variational integrals. Manuscr. Math. 30 (1979/80) 387–416. Zbl0435.49016MR567216
  20. [20] E. De Giorgi and L. Ambrosio, New functionals in the calculus of variations. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 82 (1988) 199–210 (1989). Zbl0715.49014MR1152641
  21. [21] E. De Giorgi, F. Colombini, and L. Piccinini, Frontiere orientate di misura minima e questioni collegate. Scuola Normale Superiore, Pisa (1972). Zbl0296.49031MR493669
  22. [22] L. Evans and R. Gariepy, Measure theory and fine properties of functions. Stud.Adv. Math. CRC Press, Boca Raton, FL (1992). Zbl0804.28001MR1158660
  23. [23] I. Fonseca, Lower semicontinuity of surface energies. Proc. Roy. Soc. Edinburgh Sect. A120 (1992) 99–115. Zbl0757.49013MR1149987
  24. [24] I. Fonseca and J. Malý, Relaxation of multiple integrals below the growth exponent. Annal. Inst. Henri Poincaré Anal. Non Linéaire14 (1997) 309–338. Zbl0868.49011MR1450951
  25. [25] I. Fonseca and P. Marcellini, Relaxation of multiple integrals in subcritical Sobolev spaces. J. Geom. Anal.7 (1997) 57–81. Zbl0915.49011MR1630777
  26. [26] I. Fonseca and S. Müller, Quasi-convex integrands and lower semicontinuity in L1. SIAM J. Math. Anal.23 (1992) 1081–1098. Zbl0764.49012MR1177778
  27. [27] I. Fonseca and S. Müller, Relaxation of quasiconvex functionals in BV(Ω,Rp) for integrands f(x,u,∇u). Arch. Ration. Mech. Anal.123 (1993) 1–49. Zbl0788.49039MR1218685
  28. [28] I. Fonseca and P. Rybka, Relaxation of multiple integrals in the space BV(Ω,Rp). Proc. Roy. Soc. Edinburgh Sect. A121 (1992) 321–348. Zbl0794.49012MR1179823
  29. [29] C. Goffman and J. Serrin, Sublinear functions of measures and variational integrals. Duke Math. J.31 (1964) 159–178. Zbl0123.09804MR162902
  30. [30] J. Kristensen, Lower semicontinuity of quasi-convex integrals in BV(Ω;Rm). Calc. Var. Partial Differ. Eqs.7 (1998) 249–261. Zbl0915.49007MR1651438
  31. [31] C. Larsen, Quasiconvexification in W1,1 and optimal jump microstructure in BV relaxation. SIAM J. Math. Anal. 29 (1998) 823–848. Zbl0915.49005MR1617734
  32. [32] H. Lebesgue, Intégrale, longueur, aire. Ann. Mat. Pura Appl.7 (1902) 231–359. JFM33.0307.02
  33. [33] J. Malý, Weak lower semicontinuity of polyconvex and quasiconvex integrals. Manuscr. Math.85 (1994) 419–428. Zbl0862.49017
  34. [34] P. Marcellini, Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals. Manuscr. Math.51 (1985) 1–28. Zbl0573.49010MR788671
  35. [35] P. Marcellini, On the definition and the lower semicontinuity of certain quasiconvex integrals. Annal. Inst. Henri Poincaré Anal. Non Linéaire3 (1986) 391–409. Zbl0609.49009MR868523
  36. [36] P. Mattila, Geometry of sets and measures in Euclidean spaces. Cambridge Stud. Adv. Math., vol. 44. Cambridge University Press, Cambridge (1995), Fractals and rectifiability. Zbl0819.28004MR1333890
  37. [37] N. Meyers, Quasi-convexity and lower semi-continuity of multiple variational integrals of any order. Trans. Amer. Math. Soc.119 (1965) 125–149. Zbl0166.38501MR188838
  38. [38] C. Morrey, Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific J. Math.2 (1952) 25–53. Zbl0046.10803MR54865
  39. [39] C. Morrey, Multiple integrals in the calculus of variations. Classics Math. (1966). Zbl1213.49002MR202511
  40. [40] S. Müller, On quasiconvex functions which are homogeneous of degree 1. Indiana Univ. Math. J.41 (1992) 295–301. Zbl0736.26006MR1160915
  41. [41] J. Reshetnyak, General theorems on semicontinuity and convergence with functionals. Sibirsk. Mat. Ž. 8 (1967) 1051–1069. Zbl0179.20902MR220127
  42. [42] F. Rindler, Lower semicontinuity and Young measures in BV(Ω;Rm) without Alberti’s Rank-One Theorem. Adv. Calc. Var.5 (2012) 127–159. Zbl1239.49018MR2912698
  43. [43] W. Rudin, Real and complex analysis, 3rd edition, McGraw-Hill Book Co., New York (1987). Zbl0278.26001MR924157
  44. [44] T. Schmidt, Regularity of relaxed minimizers of quasiconvex variational integrals with (p,q)-growth. Arch. Ration. Mech. Anal.193 (2009) 311–337. Zbl1173.49032MR2525120
  45. [45] T. Schmidt, A simple partial regularity proof for minimizers of variational integrals. NoDEA Nonlinear Differ. Eq. Appl.16 (2009) 109–129. Zbl1163.49040MR2486350
  46. [46] J. Serrin, A new definition of the integral for nonparametric problems in the calculus of variations. Acta Math.102 (1959) 23–32. Zbl0089.08601MR108746
  47. [47] J. Serrin, On the definition and properties of certain variational integrals. Trans. Amer. Math. Soc.101 (1961) 139–167. Zbl0102.04601MR138018
  48. [48] P. Soneji, Lower semicontinuity in BV of quasiconvex integrals with subquadratic growth. ESAIM: COCV 19 (2013) 555–573. Zbl1263.49012MR3049723
  49. [49] W. Ziemer, Weakly differentiable functions. Sobolev spaces and functions of bounded variation. Graduate Texts Math., vol. 120. Springer-Verlag, New York (1989). Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.