Relaxation in BV of integrals with superlinear growth
ESAIM: Control, Optimisation and Calculus of Variations (2014)
- Volume: 20, Issue: 4, page 1078-1122
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topSoneji, Parth. "Relaxation in BV of integrals with superlinear growth." ESAIM: Control, Optimisation and Calculus of Variations 20.4 (2014): 1078-1122. <http://eudml.org/doc/272909>.
@article{Soneji2014,
abstract = {We study properties of the functional\begin\{eqnarray\} \mathcal \{F\}\_\{\{\rm loc\}\}(u,\Omega ):= \inf \_\{(u\_\{j\})\}\bigg \lbrace \liminf \_\{j\rightarrow \infty \}\int \_\{\Omega \}f(\nabla u\_\{j\})x\, \left| \!\!\begin\{array\}\{rl\} & (u\_\{j\})\subset W\_\{\{\rm loc\}\}^\{1,r\}\left(\Omega , \right) \\ & u\_\{j\}u\,\,\textrm \{in \}\left(\Omega , \right) \end\{array\} \right. \bigg \rbrace , \end\{eqnarray\}F loc ( u,Ω ) : = inf ( u j ) lim inf j → ∞ ∫ Ω f ( ∇ u j ) d x , whereu ∈ BV(Ω;RN), and f:RN × n → R is continuous and satisfies 0 ≤ f(ξ) ≤ L(1 + | ξ | r). For r ∈ [1,2), assuming f has linear growth in certain rank-one directions, we combine a result of [A. Braides and A. Coscia, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 737–756] with a new technique involving mollification to prove an upper bound for Floc. Then, for $r\in [1,\frac\{n\}\{n-1\})$ r ∈ [ 1 , n n − 1 ) , we prove that Flocsatisfies the lower bound\begin\{equation*\} \_\{\{\rm loc\}\}(u,\Omega ) \ge \int \_\{\Omega \} f(\nabla u (x))x + \int \_\{\Omega \}\bigg (\frac\{D^\{s\}u\}\{|D^\{s\}u|\}\bigg )\,|D^\{s\}u|, \end\{equation*\}F loc ( u,Ω ) ≥ ∫ Ω f ( ∇ u ( x ) ) d x + ∫ Ω f ∞ D s u | D s u | | D s u | , providedf is quasiconvex, and the recession function f∞(defined as $ f^\{\infty \}(\xi ):= \overline\{\lim \}_\{t\rightarrow \infty \}f(t\xi )/t$f∞(ξ):=limt→∞f(tξ)/t) is assumed to be finite in certain rank-one directions. The proof of this result involves adapting work by [Kristensen,Calc. Var. Partial Differ. Eqs. 7 (1998) 249–261], and [Ambrosio and Dal Maso, J. Funct. Anal. 109 (1992) 76–97], and applying a non-standard blow-up technique that exploits fine properties of BV maps. It also makes use of the fact that Floc has a measure representation, which is proved in the appendix using a method of [Fonseca and Malý, Annal. Inst. Henri Poincaré Anal. Non Linéaire 14 (1997) 309–338].},
author = {Soneji, Parth},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {quasiconvexity; lower semicontinuity; relaxation; BV; lower semi-continuity; variation integral; bounded variation; quasicovexity},
language = {eng},
number = {4},
pages = {1078-1122},
publisher = {EDP-Sciences},
title = {Relaxation in BV of integrals with superlinear growth},
url = {http://eudml.org/doc/272909},
volume = {20},
year = {2014},
}
TY - JOUR
AU - Soneji, Parth
TI - Relaxation in BV of integrals with superlinear growth
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2014
PB - EDP-Sciences
VL - 20
IS - 4
SP - 1078
EP - 1122
AB - We study properties of the functional\begin{eqnarray} \mathcal {F}_{{\rm loc}}(u,\Omega ):= \inf _{(u_{j})}\bigg \lbrace \liminf _{j\rightarrow \infty }\int _{\Omega }f(\nabla u_{j})x\, \left| \!\!\begin{array}{rl} & (u_{j})\subset W_{{\rm loc}}^{1,r}\left(\Omega , \right) \\ & u_{j}u\,\,\textrm {in }\left(\Omega , \right) \end{array} \right. \bigg \rbrace , \end{eqnarray}F loc ( u,Ω ) : = inf ( u j ) lim inf j → ∞ ∫ Ω f ( ∇ u j ) d x , whereu ∈ BV(Ω;RN), and f:RN × n → R is continuous and satisfies 0 ≤ f(ξ) ≤ L(1 + | ξ | r). For r ∈ [1,2), assuming f has linear growth in certain rank-one directions, we combine a result of [A. Braides and A. Coscia, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 737–756] with a new technique involving mollification to prove an upper bound for Floc. Then, for $r\in [1,\frac{n}{n-1})$ r ∈ [ 1 , n n − 1 ) , we prove that Flocsatisfies the lower bound\begin{equation*} _{{\rm loc}}(u,\Omega ) \ge \int _{\Omega } f(\nabla u (x))x + \int _{\Omega }\bigg (\frac{D^{s}u}{|D^{s}u|}\bigg )\,|D^{s}u|, \end{equation*}F loc ( u,Ω ) ≥ ∫ Ω f ( ∇ u ( x ) ) d x + ∫ Ω f ∞ D s u | D s u | | D s u | , providedf is quasiconvex, and the recession function f∞(defined as $ f^{\infty }(\xi ):= \overline{\lim }_{t\rightarrow \infty }f(t\xi )/t$f∞(ξ):=limt→∞f(tξ)/t) is assumed to be finite in certain rank-one directions. The proof of this result involves adapting work by [Kristensen,Calc. Var. Partial Differ. Eqs. 7 (1998) 249–261], and [Ambrosio and Dal Maso, J. Funct. Anal. 109 (1992) 76–97], and applying a non-standard blow-up technique that exploits fine properties of BV maps. It also makes use of the fact that Floc has a measure representation, which is proved in the appendix using a method of [Fonseca and Malý, Annal. Inst. Henri Poincaré Anal. Non Linéaire 14 (1997) 309–338].
LA - eng
KW - quasiconvexity; lower semicontinuity; relaxation; BV; lower semi-continuity; variation integral; bounded variation; quasicovexity
UR - http://eudml.org/doc/272909
ER -
References
top- [1] E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal.86 (1984) 125–145. Zbl0565.49010MR751305
- [2] G. Alberti, Rank one property for derivatives of functions with bounded variation. Proc. Roy. Soc. Edinburgh Sect. A123 (1993) 239–274. Zbl0791.26008MR1215412
- [3] G. Alberti and L. Ambrosio, A geometrical approach to monotone functions in Rn, Math. Z.230 (1999) 259–316. Zbl0934.49025MR1676726
- [4] M. Amar and V. De Cicco, Quasi-polyhedral approximation of BV-functions. Ric. Mat. 54 (2005) 485–490 (2006). Zbl1139.49015MR2289495
- [5] L. Ambrosio, A compactness theorem for a new class of functions of bounded variation. Boll. Un. Mat. Ital. B3 (1989) 857–881. Zbl0767.49001MR1032614
- [6] L. Ambrosio, Existence theory for a new class of variational problems. Arch. Ration. Mech. Anal.111 (1990) 291–322. Zbl0711.49064MR1068374
- [7] L. Ambrosio, On the lower semicontinuity of quasiconvex integrals in SBV(Ω,Rk). Nonlinear Anal.23 (1994) 405–425. Zbl0817.49017MR1291580
- [8] L. Ambrosio and G. Dal Maso, On the relaxation in BV(Ω;Rm) of quasi-convex integrals. J. Funct. Anal.109 (1992) 76–97. Zbl0769.49009MR1183605
- [9] L. Ambrosio, N. Fusco and J. Hutchinson, Higher integrability of the gradient and dimension of the singular set for minimisers of the Mumford-Shah functional. Calc. Var. Partial Differ. Eq.16 (2003) 187–215. Zbl1047.49015MR1956854
- [10] L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxf. Math. Monogr. The Clarendon Press Oxford University Press, New York (2000). Zbl0957.49001MR1857292
- [11] L. Ambrosio, S. Mortola, and V. Tortorelli, Functionals with linear growth defined on vector valued BV functions. J. Math. Pures Appl.70 (1991) 269–323. Zbl0662.49007MR1113814
- [12] L. Ambrosio and D. Pallara, Integral representations of relaxed functionals on BV(Rn,Rk) and polyhedral approximation. Indiana Univ. Math. J.42 (1993) 295–321. Zbl0790.49013MR1237049
- [13] P. Aviles and Y. Giga, Variational integrals on mappings of bounded variation and their lower semicontinuity. Arch. Ration. Mech. Anal.115 (1991) 201–255. Zbl0737.49011MR1106293
- [14] J. Ball and F. Murat, W1,p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal.58 (1984) 225–253. Zbl0549.46019MR759098
- [15] G. Bouchitté, I. Fonseca, and J. Malý, The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent. Proc. Roy. Soc. Edinburgh Sect. A128 (1998) 463–479. Zbl0907.49008MR1632814
- [16] A. Braides and A. Coscia, The interaction between bulk energy and surface energy in multiple integrals. Proc. Roy. Soc. Edinburgh Sect. A124 (1994) 737–756. Zbl0810.49015MR1298590
- [17] G. Buttazzo, Semicontinuity, relaxation and integral representation in the calculus of variations. Pitman Res. Notes in Math. Ser., vol. 207. Longman Scientific & Technical, Harlow (1989). Zbl0669.49005MR1020296
- [18] L. Carbone and R. De Arcangelis, Further results on Γ-convergence and lower semicontinuity of integral functionals depending on vector-valued functions. Ric. Mat.39 (1990) 99–129. Zbl0735.49008MR1101308
- [19] G. Dal Maso, Integral representation on BV(Ω) of Γ-limits of variational integrals. Manuscr. Math. 30 (1979/80) 387–416. Zbl0435.49016MR567216
- [20] E. De Giorgi and L. Ambrosio, New functionals in the calculus of variations. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 82 (1988) 199–210 (1989). Zbl0715.49014MR1152641
- [21] E. De Giorgi, F. Colombini, and L. Piccinini, Frontiere orientate di misura minima e questioni collegate. Scuola Normale Superiore, Pisa (1972). Zbl0296.49031MR493669
- [22] L. Evans and R. Gariepy, Measure theory and fine properties of functions. Stud.Adv. Math. CRC Press, Boca Raton, FL (1992). Zbl0804.28001MR1158660
- [23] I. Fonseca, Lower semicontinuity of surface energies. Proc. Roy. Soc. Edinburgh Sect. A120 (1992) 99–115. Zbl0757.49013MR1149987
- [24] I. Fonseca and J. Malý, Relaxation of multiple integrals below the growth exponent. Annal. Inst. Henri Poincaré Anal. Non Linéaire14 (1997) 309–338. Zbl0868.49011MR1450951
- [25] I. Fonseca and P. Marcellini, Relaxation of multiple integrals in subcritical Sobolev spaces. J. Geom. Anal.7 (1997) 57–81. Zbl0915.49011MR1630777
- [26] I. Fonseca and S. Müller, Quasi-convex integrands and lower semicontinuity in L1. SIAM J. Math. Anal.23 (1992) 1081–1098. Zbl0764.49012MR1177778
- [27] I. Fonseca and S. Müller, Relaxation of quasiconvex functionals in BV(Ω,Rp) for integrands f(x,u,∇u). Arch. Ration. Mech. Anal.123 (1993) 1–49. Zbl0788.49039MR1218685
- [28] I. Fonseca and P. Rybka, Relaxation of multiple integrals in the space BV(Ω,Rp). Proc. Roy. Soc. Edinburgh Sect. A121 (1992) 321–348. Zbl0794.49012MR1179823
- [29] C. Goffman and J. Serrin, Sublinear functions of measures and variational integrals. Duke Math. J.31 (1964) 159–178. Zbl0123.09804MR162902
- [30] J. Kristensen, Lower semicontinuity of quasi-convex integrals in BV(Ω;Rm). Calc. Var. Partial Differ. Eqs.7 (1998) 249–261. Zbl0915.49007MR1651438
- [31] C. Larsen, Quasiconvexification in W1,1 and optimal jump microstructure in BV relaxation. SIAM J. Math. Anal. 29 (1998) 823–848. Zbl0915.49005MR1617734
- [32] H. Lebesgue, Intégrale, longueur, aire. Ann. Mat. Pura Appl.7 (1902) 231–359. JFM33.0307.02
- [33] J. Malý, Weak lower semicontinuity of polyconvex and quasiconvex integrals. Manuscr. Math.85 (1994) 419–428. Zbl0862.49017
- [34] P. Marcellini, Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals. Manuscr. Math.51 (1985) 1–28. Zbl0573.49010MR788671
- [35] P. Marcellini, On the definition and the lower semicontinuity of certain quasiconvex integrals. Annal. Inst. Henri Poincaré Anal. Non Linéaire3 (1986) 391–409. Zbl0609.49009MR868523
- [36] P. Mattila, Geometry of sets and measures in Euclidean spaces. Cambridge Stud. Adv. Math., vol. 44. Cambridge University Press, Cambridge (1995), Fractals and rectifiability. Zbl0819.28004MR1333890
- [37] N. Meyers, Quasi-convexity and lower semi-continuity of multiple variational integrals of any order. Trans. Amer. Math. Soc.119 (1965) 125–149. Zbl0166.38501MR188838
- [38] C. Morrey, Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific J. Math.2 (1952) 25–53. Zbl0046.10803MR54865
- [39] C. Morrey, Multiple integrals in the calculus of variations. Classics Math. (1966). Zbl1213.49002MR202511
- [40] S. Müller, On quasiconvex functions which are homogeneous of degree 1. Indiana Univ. Math. J.41 (1992) 295–301. Zbl0736.26006MR1160915
- [41] J. Reshetnyak, General theorems on semicontinuity and convergence with functionals. Sibirsk. Mat. Ž. 8 (1967) 1051–1069. Zbl0179.20902MR220127
- [42] F. Rindler, Lower semicontinuity and Young measures in BV(Ω;Rm) without Alberti’s Rank-One Theorem. Adv. Calc. Var.5 (2012) 127–159. Zbl1239.49018MR2912698
- [43] W. Rudin, Real and complex analysis, 3rd edition, McGraw-Hill Book Co., New York (1987). Zbl0278.26001MR924157
- [44] T. Schmidt, Regularity of relaxed minimizers of quasiconvex variational integrals with (p,q)-growth. Arch. Ration. Mech. Anal.193 (2009) 311–337. Zbl1173.49032MR2525120
- [45] T. Schmidt, A simple partial regularity proof for minimizers of variational integrals. NoDEA Nonlinear Differ. Eq. Appl.16 (2009) 109–129. Zbl1163.49040MR2486350
- [46] J. Serrin, A new definition of the integral for nonparametric problems in the calculus of variations. Acta Math.102 (1959) 23–32. Zbl0089.08601MR108746
- [47] J. Serrin, On the definition and properties of certain variational integrals. Trans. Amer. Math. Soc.101 (1961) 139–167. Zbl0102.04601MR138018
- [48] P. Soneji, Lower semicontinuity in BV of quasiconvex integrals with subquadratic growth. ESAIM: COCV 19 (2013) 555–573. Zbl1263.49012MR3049723
- [49] W. Ziemer, Weakly differentiable functions. Sobolev spaces and functions of bounded variation. Graduate Texts Math., vol. 120. Springer-Verlag, New York (1989). Zbl0692.46022MR1014685
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.