# Lower semicontinuity in BV of quasiconvex integrals with subquadratic growth

ESAIM: Control, Optimisation and Calculus of Variations (2013)

- Volume: 19, Issue: 2, page 555-573
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topSoneji, Parth. "Lower semicontinuity in BV of quasiconvex integrals with subquadratic growth." ESAIM: Control, Optimisation and Calculus of Variations 19.2 (2013): 555-573. <http://eudml.org/doc/272795>.

@article{Soneji2013,

abstract = {A lower semicontinuity result in BV is obtained for quasiconvex integrals with subquadratic growth. The key steps in this proof involve obtaining boundedness properties for an extension operator, and a precise blow-up technique that uses fine properties of Sobolev maps. A similar result is obtained by Kristensen in [Calc. Var. Partial Differ. Equ. 7 (1998) 249–261], where there are weaker asssumptions on convergence but the integral needs to satisfy a stronger growth condition.},

author = {Soneji, Parth},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {lower semicontinuity; quasiconvex integrals; functions of bounded variation},

language = {eng},

number = {2},

pages = {555-573},

publisher = {EDP-Sciences},

title = {Lower semicontinuity in BV of quasiconvex integrals with subquadratic growth},

url = {http://eudml.org/doc/272795},

volume = {19},

year = {2013},

}

TY - JOUR

AU - Soneji, Parth

TI - Lower semicontinuity in BV of quasiconvex integrals with subquadratic growth

JO - ESAIM: Control, Optimisation and Calculus of Variations

PY - 2013

PB - EDP-Sciences

VL - 19

IS - 2

SP - 555

EP - 573

AB - A lower semicontinuity result in BV is obtained for quasiconvex integrals with subquadratic growth. The key steps in this proof involve obtaining boundedness properties for an extension operator, and a precise blow-up technique that uses fine properties of Sobolev maps. A similar result is obtained by Kristensen in [Calc. Var. Partial Differ. Equ. 7 (1998) 249–261], where there are weaker asssumptions on convergence but the integral needs to satisfy a stronger growth condition.

LA - eng

KW - lower semicontinuity; quasiconvex integrals; functions of bounded variation

UR - http://eudml.org/doc/272795

ER -

## References

top- [1] E. Acerbi and G. Dal Maso, New lower semicontinuity results for polyconvex integrals. Calc. Var. Partial Differ. Equ.2 (1994) 329–371. Zbl0810.49014MR1385074
- [2] L. Ambrosio and G. Dal Maso, On the relaxation in BV(Ω;Rm) of quasi-convex integrals. J. Funct. Anal.109 (1992) 76–97. Zbl0769.49009MR1183605
- [3] L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (2000). Zbl0957.49001MR1857292
- [4] J.M. Ball and F. Murat, W1, p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal.58 (1984) 225–253. Zbl0549.46019MR759098
- [5] G. Bouchitté, I. Fonseca and J. Malý, The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent. Proc. of R. Soc. Edinburgh Sect. A128 (1998) 463–479. Zbl0907.49008MR1632814
- [6] L. Carbone and R. De Arcangelis, Further results on Γ-convergence and lower semicontinuity of integral functionals depending on vector-valued functions. Ric. Mat.39 (1990) 99–129. Zbl0735.49008MR1101308
- [7] M. Carozza, J. Kristensen and A. Passarelli di Napoli, Lower semicontinuity in a borderline case. Preprint (2008).
- [8] R. Černý, Relaxation of an area-like functional for the function$\frac{x}{\left|x\right|}$ x | x | . Calc. Var. Partial Differ. Equ. 28 (2007) 203–216. Zbl1109.49012MR2284566
- [9] B. Dacorogna, Direct methods in the calculus of variations. Appl. Math. Sci. 78 (1989). Zbl0703.49001MR990890
- [10] B. Dacorogna, I. Fonseca, J. Malý and K. Trivisa, Manifold constrained variational problems. Calc. Var. Partial Differ. Equ.9 (1999) 185–206. Zbl0935.49006MR1725201
- [11] I. Fonseca and J. Malý, Relaxation of multiple integrals below the growth exponent. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 14 (1997) 309–338. Zbl0868.49011MR1450951
- [12] I. Fonseca and J. Malý, From Jacobian to Hessian: distributional form and relaxation. Riv. Mat. Univ. Parma4 (2005) 45–74. Zbl1101.49011MR2197480
- [13] I. Fonseca and P. Marcellini, Relaxation of multiple integrals in subcritical Sobolev spaces. J. Geom. Anal.7 (1997) 57–81. Zbl0915.49011MR1630777
- [14] I. Fonseca and S. Müller, Quasi-convex integrands and lower semicontinuity in L1. SIAM J. Math. Anal.23 (1992) 1081–1098. Zbl0764.49012MR1177778
- [15] I. Fonseca and S. Müller, Relaxation of quasiconvex functionals in BV(Ω, Rp) for integrands f(x, u, ∇u). Arch. Ration. Mech. Anal.123 (1993) 1–49. Zbl0788.49039MR1218685
- [16] I. Fonseca, G. Leoni and S. Müller, 𝒜 quasiconvexity: weak-star convergence and the gap. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 21 (2004) 209–236. Zbl1064.49016
- [17] L. Greco, T. Iwaniec and G. Moscariello, Limits of the improved integrability of the volume forms. Indiana Univ. Math. J.44 (1995) 305–339. Zbl0855.42009MR1355401
- [18] T. Iwaniec and G. Martin, Geometric function theory and non-linear analysis. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (2001). Zbl1045.30011MR1859913
- [19] J. Kristensen, Lower semicontinuity of quasi-convex integrals in BV(Ω;Rm). Calc. Var. Partial Differ. Equ.7 (1998) 249–261. Zbl0915.49007MR1651438
- [20] J. Malý, Weak lower semicontinuity of polyconvex integrals. Proc. of R. Soc. Edinburgh Sect. A123 (1993) 681–691. Zbl0813.49017MR1237608
- [21] J. Malý, Weak lower semicontinuity of polyconvex and quasiconvex integrals. Preprint (1993). Zbl0813.49017MR1237608
- [22] J. Malý, Lower semicontinuity of quasiconvex integrals. Manusc. Math.85 (1994) 419–428. Zbl0862.49017MR1305752
- [23] P. Marcellini, On the definition and the lower semicontinuity of certain quasiconvex integrals. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 3 (1986) 391–409. Zbl0609.49009MR868523
- [24] N.G. Meyers, Quasi-convexity and lower semi-continuity of multiple variational integrals of any order. Trans. Amer. Math. Soc.119 (1965) 125–149. Zbl0166.38501MR188838
- [25] S. Müller, On quasiconvex functions which are homogeneous of degree 1. Indiana Univ. Math. J.41 (1992) 295–301. Zbl0736.26006MR1160915
- [26] F. Rindler, Lower semicontinuity and Young measures in BV without Alberti’s rank-one theorem. Adv. Calc. Var.5 (2012) 127–159. Zbl1239.49018MR2912698
- [27] W. Rudin, Real and complex analysis, 3rd edition, McGraw-Hill Book Co., New York (1987). Zbl0278.26001MR924157
- [28] J. Serrin, A new definition of the integral for nonparametric problems in the calculus of variations. Acta Math.102 (1959) 23–32. Zbl0089.08601MR108746
- [29] J. Serrin, On the definition and properties of certain variational integrals. Trans. Amer. Math. Soc.101 (1961) 139–167. Zbl0102.04601MR138018
- [30] V. Šverák, Quasiconvex functions with subquadratic growth. Proc. of R. Soc. London A433 (1991) 723–725. Zbl0741.49016MR1116970
- [31] K. Zhang, A construction of quasiconvex functions with linear growth at infinity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992) 313–326. Zbl0778.49015MR1205403
- [32] W.P. Ziemer, Weakly differentiable functions, Sobolev spaces and functions of bounded variation. Graduate Texts in Mathematics 120 (1989). Zbl0692.46022MR1014685

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.