Minimising convex combinations of low eigenvalues

Mette Iversen; Dario Mazzoleni

ESAIM: Control, Optimisation and Calculus of Variations (2014)

  • Volume: 20, Issue: 2, page 442-459
  • ISSN: 1292-8119

Abstract

top
We consider the variational problem         inf{αλ1(Ω) + βλ2(Ω) + (1 − α − β)λ3(Ω) | Ω open in ℝn, |Ω| ≤ 1}, for α, β ∈ [0, 1], α + β ≤ 1, where λk(Ω) is the kth eigenvalue of the Dirichlet Laplacian acting in L2(Ω) and |Ω| is the Lebesgue measure of Ω. We investigate for which values of α, β every minimiser is connected.

How to cite

top

Iversen, Mette, and Mazzoleni, Dario. "Minimising convex combinations of low eigenvalues." ESAIM: Control, Optimisation and Calculus of Variations 20.2 (2014): 442-459. <http://eudml.org/doc/272932>.

@article{Iversen2014,
abstract = {We consider the variational problem         inf\{αλ1(Ω) + βλ2(Ω) + (1 − α − β)λ3(Ω) | Ω open in ℝn, |Ω| ≤ 1\}, for α, β ∈ [0, 1], α + β ≤ 1, where λk(Ω) is the kth eigenvalue of the Dirichlet Laplacian acting in L2(Ω) and |Ω| is the Lebesgue measure of Ω. We investigate for which values of α, β every minimiser is connected.},
author = {Iversen, Mette, Mazzoleni, Dario},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {eigenvalues; Dirichlet–Laplacian; shape optimization; Dirichlet-Laplacian},
language = {eng},
number = {2},
pages = {442-459},
publisher = {EDP-Sciences},
title = {Minimising convex combinations of low eigenvalues},
url = {http://eudml.org/doc/272932},
volume = {20},
year = {2014},
}

TY - JOUR
AU - Iversen, Mette
AU - Mazzoleni, Dario
TI - Minimising convex combinations of low eigenvalues
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2014
PB - EDP-Sciences
VL - 20
IS - 2
SP - 442
EP - 459
AB - We consider the variational problem         inf{αλ1(Ω) + βλ2(Ω) + (1 − α − β)λ3(Ω) | Ω open in ℝn, |Ω| ≤ 1}, for α, β ∈ [0, 1], α + β ≤ 1, where λk(Ω) is the kth eigenvalue of the Dirichlet Laplacian acting in L2(Ω) and |Ω| is the Lebesgue measure of Ω. We investigate for which values of α, β every minimiser is connected.
LA - eng
KW - eigenvalues; Dirichlet–Laplacian; shape optimization; Dirichlet-Laplacian
UR - http://eudml.org/doc/272932
ER -

References

top
  1. [1] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1972). Zbl0543.33001
  2. [2] M.S. Ashbaugh and R. Benguria, Proof of the Payne−Pölya−Weinberger conjecture. Bull. Amer. Math. Soc. 25 (1991) 19–29. Zbl0736.35075MR1085824
  3. [3] M.S. Ashbaugh and R. Benguria, Isoperimetric bound for λ3/λ2 for the membrane problem. Duke Math. J.63 (1991) 333–341. Zbl0747.35023MR1115110
  4. [4] M. van den Berg, On Rayleigh’s formula for the first Dirichlet eigenvalue of a radial perturbation of a ball. J. Geometric Anal.23 (2013) 1427–1440. Zbl1302.35270MR3078360
  5. [5] M. van den Berg and M. Iversen, On the minimization of Dirichlet eigenvalues of the Laplace operator. J. Geometric Anal.23 (2013) 660–676. Zbl1262.49044MR3023854
  6. [6] L. Brasco, C. Nitsch and A. Pratelli, On the boundary of the attainable set of the Dirichlet spectrum. Z. Angew. Math. Phys.64 (2013) 591–597. Zbl1277.47023MR3068840
  7. [7] D. Bucur and G. Buttazzo, Variational methods in shape optimization problems. Prog. Nonlinear Differ. Eq. Appl. Birkhäuser Verlag, Boston (2005). Zbl1117.49001MR2150214
  8. [8] D. Bucur, G. Buttazzo and I. Figueiredo, On the attainable eigenvalues of the Laplace operator. SIAM J. Math. Anal.30 (1999) 527–536. Zbl0920.35099MR1677942
  9. [9] D. Bucur and A. Henrot, Minimization of the third eigenvalue of the Dirichlet Laplacian. Proc. Roy. Soc. London456 (2000) 985–996. Zbl0974.35082MR1805088
  10. [10] G. Buttazzo and G. Dal Maso, An existence result for a class of shape optimization problems. Arch. Rational Mech. Anal.122 (1993) 183–195. Zbl0811.49028MR1217590
  11. [11] R. Courant and D. Hilbert, Methods of Mathematical Physics, vol. 2. Wiley-VCH, New York (1962). Zbl0099.29504
  12. [12] A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers Math. Birkhäuser Verlag, Basel (2006). Zbl1109.35081MR2251558
  13. [13] D. Mazzoleni and A. Pratelli, Existence of minimizers for spectral problems. J. Math. Pures Appl. 100 (2013) 433–453. DOI: http://dx.doi.org/10.1016/j.matpur.2013.01.008. Zbl1296.35100MR3095209
  14. [14] B. Osting and C.-Y. Kao, Minimal convex combinations of three sequential Laplace−Dirichlet eigenvalues, Appl. Math. Optim. 69 (2014) 123–139. Zbl1305.49066MR3162497
  15. [15] S.A. Wolf, Asymptotic and Numerical Analysis of Linear and Nonlinear Eigenvalue Problems, Ph.D. Thesis. Stanford University (1993). MR2688979
  16. [16] S.A. Wolf and J.B. Keller, Range of the First Two Eigenvalues of the Laplacian. Proc. R. Soc. London A447 (1994) 397–412. Zbl0816.35097MR1312811

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.