Minimising convex combinations of low eigenvalues
Mette Iversen; Dario Mazzoleni
ESAIM: Control, Optimisation and Calculus of Variations (2014)
- Volume: 20, Issue: 2, page 442-459
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topIversen, Mette, and Mazzoleni, Dario. "Minimising convex combinations of low eigenvalues." ESAIM: Control, Optimisation and Calculus of Variations 20.2 (2014): 442-459. <http://eudml.org/doc/272932>.
@article{Iversen2014,
abstract = {We consider the variational problem inf\{αλ1(Ω) + βλ2(Ω) + (1 − α − β)λ3(Ω) | Ω open in ℝn, |Ω| ≤ 1\}, for α, β ∈ [0, 1], α + β ≤ 1, where λk(Ω) is the kth eigenvalue of the Dirichlet Laplacian acting in L2(Ω) and |Ω| is the Lebesgue measure of Ω. We investigate for which values of α, β every minimiser is connected.},
author = {Iversen, Mette, Mazzoleni, Dario},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {eigenvalues; Dirichlet–Laplacian; shape optimization; Dirichlet-Laplacian},
language = {eng},
number = {2},
pages = {442-459},
publisher = {EDP-Sciences},
title = {Minimising convex combinations of low eigenvalues},
url = {http://eudml.org/doc/272932},
volume = {20},
year = {2014},
}
TY - JOUR
AU - Iversen, Mette
AU - Mazzoleni, Dario
TI - Minimising convex combinations of low eigenvalues
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2014
PB - EDP-Sciences
VL - 20
IS - 2
SP - 442
EP - 459
AB - We consider the variational problem inf{αλ1(Ω) + βλ2(Ω) + (1 − α − β)λ3(Ω) | Ω open in ℝn, |Ω| ≤ 1}, for α, β ∈ [0, 1], α + β ≤ 1, where λk(Ω) is the kth eigenvalue of the Dirichlet Laplacian acting in L2(Ω) and |Ω| is the Lebesgue measure of Ω. We investigate for which values of α, β every minimiser is connected.
LA - eng
KW - eigenvalues; Dirichlet–Laplacian; shape optimization; Dirichlet-Laplacian
UR - http://eudml.org/doc/272932
ER -
References
top- [1] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1972). Zbl0543.33001
- [2] M.S. Ashbaugh and R. Benguria, Proof of the Payne−Pölya−Weinberger conjecture. Bull. Amer. Math. Soc. 25 (1991) 19–29. Zbl0736.35075MR1085824
- [3] M.S. Ashbaugh and R. Benguria, Isoperimetric bound for λ3/λ2 for the membrane problem. Duke Math. J.63 (1991) 333–341. Zbl0747.35023MR1115110
- [4] M. van den Berg, On Rayleigh’s formula for the first Dirichlet eigenvalue of a radial perturbation of a ball. J. Geometric Anal.23 (2013) 1427–1440. Zbl1302.35270MR3078360
- [5] M. van den Berg and M. Iversen, On the minimization of Dirichlet eigenvalues of the Laplace operator. J. Geometric Anal.23 (2013) 660–676. Zbl1262.49044MR3023854
- [6] L. Brasco, C. Nitsch and A. Pratelli, On the boundary of the attainable set of the Dirichlet spectrum. Z. Angew. Math. Phys.64 (2013) 591–597. Zbl1277.47023MR3068840
- [7] D. Bucur and G. Buttazzo, Variational methods in shape optimization problems. Prog. Nonlinear Differ. Eq. Appl. Birkhäuser Verlag, Boston (2005). Zbl1117.49001MR2150214
- [8] D. Bucur, G. Buttazzo and I. Figueiredo, On the attainable eigenvalues of the Laplace operator. SIAM J. Math. Anal.30 (1999) 527–536. Zbl0920.35099MR1677942
- [9] D. Bucur and A. Henrot, Minimization of the third eigenvalue of the Dirichlet Laplacian. Proc. Roy. Soc. London456 (2000) 985–996. Zbl0974.35082MR1805088
- [10] G. Buttazzo and G. Dal Maso, An existence result for a class of shape optimization problems. Arch. Rational Mech. Anal.122 (1993) 183–195. Zbl0811.49028MR1217590
- [11] R. Courant and D. Hilbert, Methods of Mathematical Physics, vol. 2. Wiley-VCH, New York (1962). Zbl0099.29504
- [12] A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers Math. Birkhäuser Verlag, Basel (2006). Zbl1109.35081MR2251558
- [13] D. Mazzoleni and A. Pratelli, Existence of minimizers for spectral problems. J. Math. Pures Appl. 100 (2013) 433–453. DOI: http://dx.doi.org/10.1016/j.matpur.2013.01.008. Zbl1296.35100MR3095209
- [14] B. Osting and C.-Y. Kao, Minimal convex combinations of three sequential Laplace−Dirichlet eigenvalues, Appl. Math. Optim. 69 (2014) 123–139. Zbl1305.49066MR3162497
- [15] S.A. Wolf, Asymptotic and Numerical Analysis of Linear and Nonlinear Eigenvalue Problems, Ph.D. Thesis. Stanford University (1993). MR2688979
- [16] S.A. Wolf and J.B. Keller, Range of the First Two Eigenvalues of the Laplacian. Proc. R. Soc. London A447 (1994) 397–412. Zbl0816.35097MR1312811
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.