A deterministic affine-quadratic optimal control problem
ESAIM: Control, Optimisation and Calculus of Variations (2014)
- Volume: 20, Issue: 3, page 633-661
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] S.P. Banks and T. Cimen, Global optimal feedback control for general nonlinear systems with nonquadratic performance criteria. System Control Lett.53 (2004) 327–346. Zbl1157.49313MR2097793
- [2] S.P. Banks and T. Cimen, Optimal control of nonlinear systems, Optimization and Control with Applications. In vol. 96 of Appl. Optim. Springer, New York (2005) 353–367. Zbl1089.49034MR2144384
- [3] H.T. Banks, B.M. Lewis and H.T. Tran, Nonlinear feedback controllers and compensators: a state-dependent Riccati equation approach. Comput. Optim. Appl.37 (2007) 177–218. Zbl1117.49032MR2325656
- [4] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations. Birkhäuser, Boston (1997). Zbl0890.49011MR1484411
- [5] M. Bardi and F. DaLio, On the Bellman equation for some unbounded control problems. Nonlinear Differ. Eqs. Appl.4 (1997) 491–510. Zbl0894.49017MR1485734
- [6] L.M. Benveniste and J.A. Scheinkman, On the differentiability of the value function in dynamic models of economics. Econometrica47 (1979) 727–732. Zbl0435.90031MR533081
- [7] L.D. Berkovitz, Optimal Control Theory. Springer-Verlag, New York (1974). Zbl0295.49001MR372707
- [8] J.F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems. Springer, New York (2000). Zbl0966.49001MR1756264
- [9] P. Cannarsa and H. Frankowska, Some characterizatins of optimal trajecotries in control theory. SIAM J. Control Optim.29 (1991) 1322–1347. Zbl0744.49011MR1132185
- [10] T. Cimen, State-dependent Riccati equation (SDRE) control: a survey. Proc. 17th World Congress IFAC (2008) 3761–3775.
- [11] H. Frankowska, Value Function in Optimal Control, Mathematical Control Theory, Part 1, 2 (2001) 516–653. Zbl1098.49501MR1972793
- [12] T. Hildebrandt and L. Graves, Implicit functions and their differentials in general analysis. Trans. Amer. Math. Soc.29 (1927) 127–153. Zbl53.0234.02MR1501380JFM53.0234.02
- [13] Y. Hu and S. Peng, Solution of forward-backward stochastic differential equations. Probab. Theory Rel. Fields103 (1995) 273–283. Zbl0831.60065MR1355060
- [14] R.E. Kalman, Contributions to the theory of optimal control. Bol. Soc. Mat. Mexicana5 (1960) 102–119. Zbl0112.06303MR127472
- [15] J. Ma and J. Yong, Forward-Backward Stochastic Differential Equations and Their Applications. Vol. 1702 of Lect. Notes Math. Springer-Verlag (1999). Zbl0927.60004MR1704232
- [16] H. Qiu and J. Yong, Hamilton-Jacobi equations and two-person zero-sum differential games with unbounded controls. ESAIM: COCV 19 (2013) 404–437. Zbl1263.49024MR3049717
- [17] J.P. Rincón-Zapatero and M.S. Santos, Differentiability of the value function in continuous-time economic models. J. Math. Anal. Appl.394 (2012) 305–323. Zbl1251.91046MR2926223
- [18] J. Yong, Finding adapted solutions of forward-backward stochastic differential equations – method of continuation, Probab. Theory Rel. Fields107 (1997) 537–572. Zbl0883.60053MR1440146
- [19] J. Yong, Stochastic optimal control and forward-backward stochastic differential equations. Comput. Appl. Math.21 (2002) 369–403. Zbl1123.60313MR2009959
- [20] J. Yong, Forward backward stochastic differential equations with mixed initial and terminal conditions. Trans. AMS362 (2010) 1047–1096. Zbl1185.60067MR2551515
- [21] J. Yong and X.Y. Zhou, Stochastic Control: Hamiltonian Systems and HJB Equations. Springer-Verlag (1999). Zbl0943.93002MR1696772
- [22] Y. You, A nonquadratic Bolza problem and a quasi-Riccati equation for distributed parameter systems. SIAM J. Control Optim.25 (1987) 905–920. Zbl0632.49004MR893989
- [23] Y. You, Synthesis of time-variant optimal control with nonquadratic criteria. J. Math. Anal. Appl.209 (1997) 662–682. Zbl0872.49015MR1474631
- [24] E. Zeidler, Nonlinear Functional Analysis and Its Applications, I: Fixed-Point Theorems. Springer-Verlag, New York (1986) 150–151. Zbl0583.47050MR816732
- [25] E. Zeidler, Nonlinear Functional Analysis and Its Applications, II/B: Nonlinear Monotone Operators. Springer-Verlag, New York (1990). Zbl0684.47029MR1033498