Factoring and testing primes in small space
Viliam Geffert; Dana Pardubská
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2013)
- Volume: 47, Issue: 3, page 241-259
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. Agrawal, N. Kayal and N. Saxena, Primes is in P. Ann. Math.160 (2004) 781–93. Zbl1071.11070MR2123939
- [2] E. Allender, The division breakthroughs. Bull. Eur. Assoc. Theoret. Comput. Sci.74 (2001) 61–77. Zbl1027.68606MR1858864
- [3] E. Allender, D.A. Mix Barrington and W. Hesse, Uniform circuits for division: Consequences and problems, in Proc. of IEEE Conf. Comput. Complexity (2001) 150–59.
- [4] A. Bertoni, C. Mereghetti and G. Pighizzini, Strong optimal lower bounds for Turing machines that accept nonregular languages, in Proc. of Math. Found. Comput. Sci., Lect. Notes Comput. Sci., vol. 969. Springer-Verlag (1995) 309–18. Zbl1193.68119MR1467265
- [5] C. Boyer, A History of Mathematics. John Wiley & Sons (1968). Zbl0698.01001MR234791
- [6] A. K. Chandra, D. C. Kozen and L. J. Stockmeyer. Alternation. J. Assoc. Comput. Mach.28 (1981) 114–33. Zbl0473.68043MR603186
- [7] J.H. Chang, O. H. Ibarra, M.A. Palis and B. Ravikumar, On pebble automata. Theoret. Comput. Sci.44 (1986) 111–21. Zbl0612.68045MR858693
- [8] R. Chang, J. Hartmanis and D. Ranjan. Space bounded computations: Review and new separation results. Theoret. Comput. Sci.80 (1991) 289–302. Zbl0745.68051MR1117067
- [9] A. Chiu, Complexity of Parallel Arithmetic Using The Chinese Remainder Representation. Master’s thesis, University Wisconsin-Milwaukee (1995). (G. Davida, supervisor).
- [10] A. Chiu, G. Davida and B. Litow, Division in logspace-uniform NC1. RAIRO: ITA 35 (2001) 259–75. Zbl1014.68062MR1869217
- [11] G.I. Davida and B. Litow, Fast parallel arithmetic via modular representation. SIAM J. Comput.20 (1991) 756–65. Zbl0736.68040MR1105936
- [12] P.F. Dietz, I.I. Macarie and J.I. Seiferas, Bits and relative order from residues, space efficiently. Inform. Process. Lett.50 (1994) 123–27. Zbl0807.68051MR1281051
- [13] W. Ellison and F. Ellison, Prime Numbers. John Wiley & Sons (1985). Zbl0624.10001MR814687
- [14] V. Geffert, Nondeterministic computations in sublogarithmic space and space constructibility. SIAM J. Comput.20 (1991) 484–98. Zbl0762.68022MR1094527
- [15] V. Geffert, C. Mereghetti and G. Pighizzini, Sublogarithmic bounds on space and reversals. SIAM J. Comput.28 (1999) 325–40. Zbl0914.68068MR1630493
- [16] V. Geffert and D. Pardubská, Unary coded NP-complete languages in ASPACE(log log n), in Proc. of Develop. Lang. Theory, Lect. Notes Comput. Sci., vol. 7410. Springer-Verlag (2012) 166–77. Zbl1316.68062
- [17] K. Iwama, ASPACE(o(log log n)) is regular. SIAM J. Comput.22 (1993) 136–46. Zbl0767.68039
- [18] N. Koblitz, A Course in Number Theory and Cryptography, Graduate Texts in Math., vol. 114. Springer-Verlag (1994). Zbl0819.11001
- [19] I. I. Macarie, Space-efficient deterministic simulation of probabilistic automata, in Proc. of Symp. Theoret. Aspects Comput. Sci., Lect. Notes Comput. Sci., vol. 775. Springer-Verlag (1994) 109–22. Zbl0907.68081
- [20] C. Mereghetti, The descriptional power of sublogarithmic resource bounded Turing machines. In Proc. of Descr. Compl. Formal Syst. IFIP (2007) 12–26. (To appear in J. Automat. Lang. Combin).
- [21] P. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, in Proc. of IEEE Symp. Found. Comput. Sci. (1994) 124–34. MR1489242
- [22] A. Szepietowski, Turing Machines with Sublogarithmic Space, Lect. Notes Comput. Sci., vol. 843. Springer-Verlag (1994). Zbl0998.68062MR1314820
- [23] http://en.wikipedia.org/[0]wiki/[0]Primenumbertheorem.