Total overlapping Schwarz' preconditioners for elliptic problems

Faker Ben Belgacem; Nabil Gmati; Faten Jelassi

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2011)

  • Volume: 45, Issue: 1, page 91-113
  • ISSN: 0764-583X

Abstract

top
A variant of the Total Overlapping Schwarz (TOS) method has been introduced in [Ben Belgacem et al., C. R. Acad. Sci., Sér. 1 Math. 336 (2003) 277–282] as an iterative algorithm to approximate the absorbing boundary condition, in unbounded domains. That same method turns to be an efficient tool to make numerical zooms in regions of a particular interest. The TOS method enjoys, then, the ability to compute small structures one wants to capture and the reliability to obtain the behavior of the solution at infinity, when handling exterior problems. The main aim of the paper is to use this modified Schwarz procedure as a preconditioner to Krylov subspaces methods so to accelerate the calculations. A detailed study concludes to a super-linear convergence of GMRES and enables us to state accurate estimates on the convergence speed. Afterward, some implementation hints are discussed. Analytical and numerical examples are also provided and commented that demonstrate the reliability of the TOS-preconditioner.

How to cite

top

Ben Belgacem, Faker, Gmati, Nabil, and Jelassi, Faten. "Total overlapping Schwarz' preconditioners for elliptic problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 45.1 (2011): 91-113. <http://eudml.org/doc/273109>.

@article{BenBelgacem2011,
abstract = {A variant of the Total Overlapping Schwarz (TOS) method has been introduced in [Ben Belgacem et al., C. R. Acad. Sci., Sér. 1 Math. 336 (2003) 277–282] as an iterative algorithm to approximate the absorbing boundary condition, in unbounded domains. That same method turns to be an efficient tool to make numerical zooms in regions of a particular interest. The TOS method enjoys, then, the ability to compute small structures one wants to capture and the reliability to obtain the behavior of the solution at infinity, when handling exterior problems. The main aim of the paper is to use this modified Schwarz procedure as a preconditioner to Krylov subspaces methods so to accelerate the calculations. A detailed study concludes to a super-linear convergence of GMRES and enables us to state accurate estimates on the convergence speed. Afterward, some implementation hints are discussed. Analytical and numerical examples are also provided and commented that demonstrate the reliability of the TOS-preconditioner.},
author = {Ben Belgacem, Faker, Gmati, Nabil, Jelassi, Faten},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {total overlapping Schwarz method; minimum residual Krylov methods; numerical zooms; cracked or perforated domains; Laplace boundary value problems; total overlapping Schwarz preconditioner; minimum residual Krylov algorithms; convergence; Laplace equation; generalized minimal residual (GMRES) method},
language = {eng},
number = {1},
pages = {91-113},
publisher = {EDP-Sciences},
title = {Total overlapping Schwarz' preconditioners for elliptic problems},
url = {http://eudml.org/doc/273109},
volume = {45},
year = {2011},
}

TY - JOUR
AU - Ben Belgacem, Faker
AU - Gmati, Nabil
AU - Jelassi, Faten
TI - Total overlapping Schwarz' preconditioners for elliptic problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2011
PB - EDP-Sciences
VL - 45
IS - 1
SP - 91
EP - 113
AB - A variant of the Total Overlapping Schwarz (TOS) method has been introduced in [Ben Belgacem et al., C. R. Acad. Sci., Sér. 1 Math. 336 (2003) 277–282] as an iterative algorithm to approximate the absorbing boundary condition, in unbounded domains. That same method turns to be an efficient tool to make numerical zooms in regions of a particular interest. The TOS method enjoys, then, the ability to compute small structures one wants to capture and the reliability to obtain the behavior of the solution at infinity, when handling exterior problems. The main aim of the paper is to use this modified Schwarz procedure as a preconditioner to Krylov subspaces methods so to accelerate the calculations. A detailed study concludes to a super-linear convergence of GMRES and enables us to state accurate estimates on the convergence speed. Afterward, some implementation hints are discussed. Analytical and numerical examples are also provided and commented that demonstrate the reliability of the TOS-preconditioner.
LA - eng
KW - total overlapping Schwarz method; minimum residual Krylov methods; numerical zooms; cracked or perforated domains; Laplace boundary value problems; total overlapping Schwarz preconditioner; minimum residual Krylov algorithms; convergence; Laplace equation; generalized minimal residual (GMRES) method
UR - http://eudml.org/doc/273109
ER -

References

top
  1. [1] R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). Zbl1098.46001MR450957
  2. [2] J.B. Apoung-Kamga and O. Pironneau, Numerical zoom for multiscale problems with an application to nuclear waste disposal. J. Comput. Phys.224 (2007) 403–413. Zbl1261.76014MR2322278
  3. [3] F. Ben Belgacem, M. Fournié, N. Gmati, F. Jelassi, Handling boundary conditions at infinity for some exterior problems by the alternating Schwarz method. C. R. Acad. Sci., Sér. 1 Math. 336 (2003) 277–282. Zbl1027.65161MR1968273
  4. [4] F. Ben Belgacem, M. Fournié, N. Gmati and F. Jelassi, On the Schwarz algorithms for the elliptic exterior boundary value problems. ESAIM: M2AN 39 (2005) 693–714. Zbl1089.65126MR2165675
  5. [5] C. Bernardi, Y. Maday and A.T. Patera, A New Non Conforming Approach to Domain Decomposition: The Mortar Element Method, in Non-linear Partial Differential Equations and their Applications 11, H. Brezis and J.-L. Lions Eds., Pitman/Wiley, London/New York (1994) 13–51. Zbl0797.65094MR1268898
  6. [6] S. Bertoluzza, M. Ismaïl and B. Maury, The Fat Boundary Method: Semi-Discrete Scheme and Some Numerical experiments, in Domain decomposition methods in science and engineering, Lect. Notes Comput. Sci. Eng. 40, Springer, Berlin (2005) 513–520. Zbl1067.65121MR2235779
  7. [7] F. Brezzi, J.L. Lions and O. Pironneau, On the chimera method. C. R. Acad. Sci., Sér. 1 Math. 332 (2001) 655–660. Zbl0988.65117MR1842464
  8. [8] H.D. Bui, Fracture Mechanics: Inverse Problems and Solutions, Solid Mechanics and Its Applications 139. Springer (2006). Zbl1108.74002
  9. [9] P.-G. Ciarlet, The Finite Element Method for Elliptic Problems, Studies in Mathematics and Its Applications 4. North Holland (1978). Zbl0383.65058MR520174
  10. [10] D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, Applied Mathematical Sciences 93. Springer (1992). Zbl0760.35053MR1183732
  11. [11] R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Second edition, Masson, Paris (1988). Zbl0642.35001
  12. [12] G. Dolzmann and S. Müller, Estimates for Green's matrices of elliptic systems by Lp theory. Manuscripta Math.88 (1995) 261–273. Zbl0846.35040MR1354111
  13. [13] V. Frayssé, L. Giraud, G. Gratton and J. Langou, A Set of GMRES Routines for Real and Complex Arithmeticcs on High Performance Computers. CERFACS Technical Report TR/PA/03/3 (2003). Zbl1070.65527
  14. [14] R. Glowinski, J. He, J. Rappaz and J. Wagner, Approximation of multi-scale elliptic problems using patches of finite elements. C. R. Acad. Sci., Sér. 1 Math. 337 (2003) 679–684. Zbl1036.65090MR2030111
  15. [15] R. Glowinski, J. He, J. Rappaz and J. Wagner, A multi-domain method for solving numerically multi-scale elliptic problems. C.R., Math. 338 (2004) 741–746. Zbl1049.65145MR2065385
  16. [16] N. Gmati and B. Philippe, Comments on the GMRES convergence for preconditioned systems, in 6th International Conference on Large-Scale Scientific Computations, June 5–9, 2007, I. Lirkov, S. Margenov and J. Waśniewski Eds., Lect. Notes Comput. Sci. 4818, Springer-Verlag (2008) 40–51. Zbl1229.65063MR2518410
  17. [17] P. Grisvard, Boundary value problems in non-smooth domains, Monographs and Studies in Mathematics 24. Pitman, London (1985). Zbl0695.35060
  18. [18] M. Grüter and K.-O Widman, The Green function for uniformly elliptic equations. Manuscripta Math.37 (1982) 303–342. Zbl0485.35031MR657523
  19. [19] J. He, A. Lozinski and J. Rappaz, Accelerating the method of finite element patches using approximately harmonic functions. C. R. Acad. Sci., Sér. 1 Math. 345 (2007) 107–112. Zbl1120.65126MR2343562
  20. [20] F. Hecht, EMC2, Éditeur de Maillage et de Contours en 2 Dimensions. http://www-rocq1.inria.fr/gamma/cdrom/www/emc2. 
  21. [21] F. Hecht, A. Lozinski and O. Pironneau, Numerical Zoom and the Schwarz Algorithm, in Domain Decomposition Methods in Science and Engineering XVIII, Lecture Notes in Computational Science and Engineering 70, M. Bercovier, M.J. Gander, R. Kornhuber and O. Widlund Eds., Springer (2008). Zbl1183.65162MR2230692
  22. [22] M. Ismaïl, The Fat Boundary Method for the Numerical Resolution of Elliptic Problems in Perforated Domains. Application to 3D Fluid Flows. Ph.D. thesis, Université UPMC, Paris VI, France (2004). 
  23. [23] F. Jelassi, Sur les méthodes de Schwarz pour les problèmes extérieurs. Application au calcul des courants de Foucault en électrotechnique. Ph.D. Thesis, Université Paul Sabatier, Toulouse III, France (2006). 
  24. [24] P.-L. Lions, On the alternating Schwarz method I., in First International Symposium on Domain Decomposition Methods for Partial Differential Equations, R. Gowinski, G.H. Golub, G.A. Meurant and J. Périaux Eds., SIAM, Philadelphia (1988) 1–42. Zbl0658.65090MR972510
  25. [25] J. Liu and J.M. Jin, A novel hybridization of higher order finite element and boundary integral methods for electromagnetic scattering and radiation problems. IEEE Trans. Antennas Propag.49 (2001) 1794–1806. Zbl1001.78021
  26. [26] B. Lucquin and O. Pironneau, Introduction to Scientific Computing. John Wiley & Sons Ltd., Inc., New York (1998). Zbl0899.65062MR1627818
  27. [27] D. Martin, MELINA, Guide de l'utilisateur. I.R.M.A.R., Université de Rennes I/E.N.S.T.A. Paris, France (2000). http://perso.univ-rennes1.fr/daniel.martin/melina. 
  28. [28] B. Maury, A fat boundary method for the Poisson equation in a domain with holes. J. Sci. Comp.16 (2001) 319–339. Zbl0995.65115MR1873286
  29. [29] I. Moret, A note on the superlinear convergence of GMRES. SIAM J. Numer. Anal.34 (1997) 513–516. Zbl0873.65054MR1442925
  30. [30] J.C. Nédélec, Acoustic and Electromagnetic Equations. Integral Representations for Harmonic Problems. Springer (2000). Zbl0981.35002MR1822275
  31. [31] O. Pironneau, Numerical Zoom for Localized Multi-Scale Problems. Invited conference, MAFELAP, Brunel University, London (2009). 
  32. [32] A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations. Oxford Science Publications (1999). Zbl0931.65118MR1857663
  33. [33] A. Quarteroni, A Veneziani and P. Zunino, A domain decomposition method for advection-diffusion processes with application to blood solutes. SIAM J. Sci. Comput. 23 (2002) 1959–1980. Zbl1032.76036MR1923721
  34. [34] Y. Saad, Iterative methods for sparse linear systems. Second edition, SIAM (2003). Zbl1031.65046MR1990645
  35. [35] R. Schinzinger and P.A.A. Laura, Conformal Mapping: Methods and Applications. Amsterdam: Elsevier Science Publishers (1991). Zbl0863.30010MR1159967
  36. [36] A. Toselli and O.B. Widlund, Domain decomposition methods–algorithms and theory, Springer Series in Computational Mathematics 34. Springer-Verlag, Berlin (2005). Zbl1069.65138
  37. [37] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung). Math. Ann.71 (1912) 441–479. Zbl43.0436.01MR1511670JFM43.0436.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.