A frictionless contact algorithm for deformable bodies
- Volume: 45, Issue: 2, page 235-254
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. Astorino, J.-F. Gerbeau, O. Pantz and K.-F. Traoré, Fluid-structure interaction and multi-body contact: Application to aortic valves. Comput. Methods Appl. Mech. Eng.198 (2009) 3603–3612. Zbl1229.74095MR2571824
- [2] J.M. Ball, Global invertibility of Sobolev functions and the interpenetration of matter. Proc. Roy. Soc. Edinburgh Sect. A88 (1981) 315–328. Zbl0478.46032MR616782
- [3] D. Baraff, Analytical methods for dynamic simulation of non-penetrating rigid bodies, in SIGGRAPH '89: Proceedings of the 16th annual conference on computer graphics and interactive techniques, ACM Press, New York, USA (1989) 223–232.
- [4] D. Baraff, Fast contact force computation for nonpenetrating rigid bodies, in SIGGRAPH '94: Proceedings of the 21st annual conference on computer graphics and interactive techniques, ACM Press, New York, USA (1994) 23–34.
- [5] D. Baraff and A. Witkin, Dynamic simulation of non-penetrating flexible bodies, in SIGGRAPH '92: Proceedings of the 19th annual conference on computer graphics and interactive techniques, ACM Press, New York (1992) 303–308.
- [6] D. Baraff and A. Witkin, Large steps in cloth simulation, in SIGGRAPH '98: Proceedings of the 25th annual conference on computer graphics and interactive techniques, ACM Press, New York (1998) 43–54.
- [7] P.G. Ciarlet and J. Nečas, Injectivity and self-contact in nonlinear elasticity. Arch. Rational Mech. Anal.97 (1987) 171–188. Zbl0628.73043MR862546
- [8] M. Giaquinta, G. Modica and J. Souček, Cartesian currents, weak diffeomorphisms and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal.106 (1989) 97–159. Zbl0677.73014MR980756
- [9] M. Giaquinta, G. Modica and J. Souček, Erratum and addendum to: “Cartesian currents, weak diffeomorphisms and existence theorems in nonlinear elasticity” [Arch. Rational Mech. Anal. 106 (1989) 97–159; MR 90c:58044]. Arch. Rational Mech. Anal.109 (1990) 385–392. Zbl0712.73009MR980756
- [10] O. Gonzalez, J.H. Maddocks, F. Schuricht and H. von der Mosel, Global curvature and self-contact of nonlinearly elastic curves and rods. Calc. Var. Partial Differ. Equ.14 (2002) 29–68. Zbl1006.49001MR1883599
- [11] J.O. Hallquist, G.L. Goudreau and D.J. Benson, Sliding interfaces with contact-impact in large-scale Lagrangian computations. Comput. Methods Appl. Mech. Eng.51 (1985) 107–137. Zbl0567.73120MR822741
- [12] M. Heinstein, S. Attaway, J. Swegle and F. Mello, A general-purpose contact detection algorithm for nonlinear structural analysis code. Sandia Report SAND92-2141, Sandia National Laboratories, Alburquerque (1993).
- [13] G. Hirota, S. Fisher and A. State, An improved finite-element contact model for anatomical simulations. Vis. Comput.19 (2003) 291–309.
- [14] M. Jean, The non-smooth contact dynamics method. Computational modeling of contact and friction. Comput. Methods Appl. Mech. Eng. 177 (1999) 235–257. Zbl0959.74046MR1710453
- [15] M. Jean, V. Acary and Y. Monerie, Non-smooth contact dynamics approach of cohesive materials. Non-smooth mechanics. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 359 (2001) 2497–2518. Zbl1011.74051MR1884312
- [16] N. Kikuchi and J.T. Oden, Contact problems in elasticity: a study of variational inequalities and finite element methods, SIAM Studies in Applied Mathematics 8. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1988). Zbl0685.73002MR961258
- [17] A. Klarbring, Large displacement frictional contact: a continuum framework for finite element discretization. Eur. J. Mech. A Solids14 (1995) 237–253. Zbl0824.73061MR1331237
- [18] T.A. Laursen, Formulation and treatment of frictional contact problems using finite elements. SUDAM Report 92 (1992).
- [19] T.A. Laursen, Computational contact and impact mechanics, Fundamentals of modeling interfacial phenomena in nonlinear finite element analysis. Springer-Verlag, Berlin (2002). Zbl0996.74003MR1902698
- [20] T.A. Laursen and J.C. Simo, A continuum-based finite element formulation for the implicit solution of multibody, large deformation frictional contact problems. Int. J. Numer. Methods Eng.36 (1993) 3451–3485. Zbl0833.73057MR1242927
- [21] V.J. Milenkovic and H. Schmidl, Optimization-based animation, in SIGGRAPH '01: Proceedings of the 28th annual conference on computer graphics and interactive techniques, ACM Press, New York (2001) 37–46.
- [22] B.S. Mordukhovich, Variational analysis and generalized differentiation. I Basic theory, Grundlehren der Mathematischen Wissenschaften 330. Springer-Verlag, Berlin (2006). Zbl1100.49002MR2191744
- [23] B.S. Mordukhovich, Variational analysis and generalized differentiation. II Applications, Grundlehren der Mathematischen Wissenschaften 331. Springer-Verlag, Berlin (2006). Zbl1100.49002MR2191745
- [24] J.J. Moreau, An introduction to unilateral dynamics. Lect. Notes Appl. Comput. Mech.14 (2004) 1–26. Zbl1123.70014
- [25] O. Pantz, The modeling of deformable bodies with frictionless (self-)contacts. Rapport Interne 585, CMAP, École Polytechnique, Palaiseau (2005). Zbl1138.74038
- [26] O. Pantz, Contacts en dimension 2 : Une méthode de pénalisation. Rapport Interne 597, CMAP, École Polytechnique, Palaiseau (2006).
- [27] O. Pantz, The modeling of deformable bodies with frictionless (self-)contacts. Arch. Rational Mech. Anal.188 (2008) 183–212. Zbl1138.74038MR2385740
- [28] M.A. Puso and T.A. Laursen, A 3D contact smoothing method using Gregory patches. Int. J. Numer. Methods Eng.54 (2002) 1161–1194. Zbl1098.74711MR1911054
- [29] F. Schuricht, A variational approach to obstacle problems for shearable nonlinearly elastic rods. Arch. Rational Mech. Anal.140 (1997) 103–159. Zbl0898.73080MR1482930
- [30] F. Schuricht, Regularity for shearable nonlinearly elastic rods in obstacle problems. Arch. Rational Mech. Anal.145 (1998) 23–49. Zbl0915.73078MR1656476
- [31] F. Schuricht, Variational approach to contact problems in nonlinear elasticity. Calc. Var. Partial Differ. Equ.15 (2002) 433–449. Zbl1050.35015MR1942127
- [32] F. Schuricht and H. von der Mosel, Euler-Lagrange equations for nonlinearly elastic rods with self-contact. Arch. Rational Mech. Anal.168 (2003) 35–82. Zbl1030.74029MR2029004
- [33] Q. Tang, Almost-everywhere injectivity in nonlinear elasticity. Proc. Roy. Soc. Edinburgh Sect. A109 (1988) 79–95. Zbl0656.73010MR952330
- [34] P. Wriggers, Finite element algorithms for contact problems. Arch. Comput. Methods Eng.2 (1995) 1–49. Zbl0840.73067MR1367147
- [35] P. Wriggers, Computational Contact Mechanics. Springer, New York (2006).
- [36] B. Yang, T.A. Laursen and X. Meng, Two dimensional mortar contact methods for large deformation frictional sliding. Int. J. Numer. Methods Eng.62 (2005) 1183–1225. Zbl1161.74497MR2120292