Adaptive mesh refinement strategy for a non conservative transport problem
Benjamin Aymard; Frédérique Clément; Marie Postel
- Volume: 48, Issue: 5, page 1381-1412
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] B. Aymard, F. Clément, F. Coquel and M. Postel, Numerical simulation of the selection process of the ovarian follicles. ESAIM: Proc. 38 (2012) 99–117. Zbl1336.92020MR3006538
- [2] B. Aymard, F. Clément, F. Coquel and M. Postel, A numerical method for transport equations with discontinuous flux functions: Application to mathematical modeling of cell dynamics. SIAM J. Sci. Comput.35 (2013) 2442–2468. Zbl1285.65057MR3123827
- [3] R. Bürger, R. Ruiz, K. Schneider and M.A. Sepúlveda, Fully adaptive multiresolution schemes for strongly degenerate parabolic equations with discontinuous flux. J. Engrg. Math.60 (2008) 365–385. Zbl1137.65393MR2396490
- [4] F. Clément and D. Monniaux, Multiscale modelling of ovarian follicular selection. Prog. Biophys. Mol. Biol.113 (2013) 398–408.
- [5] A. Cohen, S.M. Kaber, S. Müller and M. Postel, Fully adaptive multiresolution finite volume schemes for conservation laws. Math. Comput.72 (2003) 183–225. Zbl1010.65035MR1933818
- [6] A. Cohen, S.M. Kaber and M. Postel, Adaptive multiresolution for finite volume solutions of gas dynamics. Comput. Fluids32 (2003) 31–38. Zbl1009.76520
- [7] Multiresolution and Adaptive Methods for Convection-Dominated Problems, edited by F. Coquel, Y. Maday, S. Müller, M. Postel and Q. Tran, vol. 29. ESAIM: Proc. (2009) 1–108. Zbl05656310MR2766462
- [8] F. Coquel, Q. Nguyen, M. Postel and Q. Tran, Local time stepping applied to implicit-explicit methods for hyperbolic systems. Multiscale Model. Simul.8 (2010) 540–570. Zbl1204.35017MR2581033
- [9] F. Coquel, M. Postel and Q. Tran, Convergence of time–space adaptive algorithms for nonlinear conservation laws. IMA J. Numer. Anal.32 (2012) 1440–1483. Zbl1273.65119MR2991834
- [10] N. Echenim, F. Clément and M. Sorine, Multiscale modeling of follicular ovulation as a reachability problem. Multiscale Model. Simul.6 (2007) 895–912. Zbl1149.35388MR2368972
- [11] N. Echenim, D. Monniaux, M. Sorine and F. Clément, Multi-scale modeling of the follicle selection process in the ovary. Math. Biosci.198 (2005) 57–79. Zbl1076.92017MR2187068
- [12] A. Harten, Multiresolution algorithms for the numerical solutions of hyperbolic conservation laws. Commun. Pure Appl. Math.48 (1995) 1305–1342. Zbl0860.65078MR1369391
- [13] Summer school on multiresolution and adaptive mesh refinement methods, edited by V. Louvet and M. Massot, vol. 34. ESAIM: Proc. (2011) 1–290. Zbl1302.65211MR2905893
- [14] P. Michel, Multiscale modeling of follicular ovulation as a mass and maturity dynamical system. Multiscale Model. Simul.9 (2011) 282–313. Zbl1219.35333MR2801206
- [15] S. Müller, Adaptive multiscale schemes for conservation laws, vol. 27 of Lect. Notes Comput. Sci. Eng. Springer-Verlag, Berlin (2003). Zbl1016.76004MR1952371
- [16] B. Perthame,Transport Equations In Biology. Front. Math. Birkhauser Verlag, Basel (2007). Zbl1185.92006MR2270822
- [17] A. Sakaue-Sawano, H. Kurokawa, T. Morimura, A. Hanyu, H. Hama, H. Osawa, S. Kashiwagi, K. Fukami, T. Miyata, H. Miyoshi, T. Imamura, M. Ogawa, H. Masai and A. Miyawaki, Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell132 (2008) 487–498.
- [18] P. Shang, Cauchy problem for multiscale conservation laws: Applications to structured cell populations. J. Math. Anal. Appl.401 (2013) 896–920. Zbl1307.35164MR3018037
- [19] M. Tomura, A. Sakaue-Sawano, Y. Mori, M. Takase-Utsugi, A. Hata, K. Ohtawa, O. Kanagawa and A. Miyawaki, Contrasting quiescent G0 phase with mitotic cell cycling in the mouse immune system. PLoS ONE 8 (2013) e73801.