Non linear schemes for the heat equation in 1D

Bruno Després

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2014)

  • Volume: 48, Issue: 1, page 107-134
  • ISSN: 0764-583X

Abstract

top
Inspired by the growing use of non linear discretization techniques for the linear diffusion equation in industrial codes, we construct and analyze various explicit non linear finite volume schemes for the heat equation in dimension one. These schemes are inspired by the Le Potier’s trick [C. R. Acad. Sci. Paris, Ser. I 348 (2010) 691–695]. They preserve the maximum principle and admit a finite volume formulation. We provide a original functional setting for the analysis of convergence of such methods. In particular we show that the fourth discrete derivative is bounded in quadratic norm. Finally we construct, analyze and test a new explicit non linear maximum preserving scheme with third order convergence: it is optimal on numerical tests.

How to cite

top

Després, Bruno. "Non linear schemes for the heat equation in 1D." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 48.1 (2014): 107-134. <http://eudml.org/doc/273136>.

@article{Després2014,
abstract = {Inspired by the growing use of non linear discretization techniques for the linear diffusion equation in industrial codes, we construct and analyze various explicit non linear finite volume schemes for the heat equation in dimension one. These schemes are inspired by the Le Potier’s trick [C. R. Acad. Sci. Paris, Ser. I 348 (2010) 691–695]. They preserve the maximum principle and admit a finite volume formulation. We provide a original functional setting for the analysis of convergence of such methods. In particular we show that the fourth discrete derivative is bounded in quadratic norm. Finally we construct, analyze and test a new explicit non linear maximum preserving scheme with third order convergence: it is optimal on numerical tests.},
author = {Després, Bruno},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite volume schemes; heat equation; non linear correction; nonlinear correction; numerical examples; Le Potier correction method; maximum preserving; Courant-Friedrichs-Lewy (CFL) condition; convergence; stability},
language = {eng},
number = {1},
pages = {107-134},
publisher = {EDP-Sciences},
title = {Non linear schemes for the heat equation in 1D},
url = {http://eudml.org/doc/273136},
volume = {48},
year = {2014},
}

TY - JOUR
AU - Després, Bruno
TI - Non linear schemes for the heat equation in 1D
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2014
PB - EDP-Sciences
VL - 48
IS - 1
SP - 107
EP - 134
AB - Inspired by the growing use of non linear discretization techniques for the linear diffusion equation in industrial codes, we construct and analyze various explicit non linear finite volume schemes for the heat equation in dimension one. These schemes are inspired by the Le Potier’s trick [C. R. Acad. Sci. Paris, Ser. I 348 (2010) 691–695]. They preserve the maximum principle and admit a finite volume formulation. We provide a original functional setting for the analysis of convergence of such methods. In particular we show that the fourth discrete derivative is bounded in quadratic norm. Finally we construct, analyze and test a new explicit non linear maximum preserving scheme with third order convergence: it is optimal on numerical tests.
LA - eng
KW - finite volume schemes; heat equation; non linear correction; nonlinear correction; numerical examples; Le Potier correction method; maximum preserving; Courant-Friedrichs-Lewy (CFL) condition; convergence; stability
UR - http://eudml.org/doc/273136
ER -

References

top
  1. [1] I. Aavatsmark, T. Barkve, O. Boe, T. Mannseth, Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: Derivation of the methods. SIAM J. Sci. Comput. 19 (1998) 1700–1716. Zbl0951.65080MR1618761
  2. [2] F. Boyer, F. Hubert, Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities. SIAM J. Numer. Anal.46 (2008) 3032–3070. Zbl1180.35533MR2439501
  3. [3] F. Brezzi, K. Lipnikov, M. Shashkov, V. Simoncini, A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput. Meth. Appl. Mech. Eng.196 (2007) 3682–3692. Zbl1173.76370MR2339994
  4. [4] C. Buet, B. Després and E. Franck, Design of asymptotic preserving finite volume schemes for the hyperbolic heat equation on unstructured meshes Numerische Mathematik, Online First (2012). Zbl1263.65085MR2969268
  5. [5] C. Cancès, M. Cathala, C. Le Potier, Monotone coercive cell-centered finite volume schemes for anisotropic diffusion equations, online Numer. Math. (2013). Zbl1281.65139MR3117507
  6. [6] G. Cohen, Higher-Order Numerical Methods for Transient Wave Equations. Springer-Verlag (2001) Zbl0985.65096MR1870851
  7. [7] B. Després, Convergence of non-linear finite volume schemes for linear transport. In Notes from the XIth Jacques-Louis Lions Hispano-French School on Numerical Simulation in Physics and Engineering. Grupo Anal. Teor. Numer. Modelos Cienc. Exp. Univ. Cadiz (2004) 219–239. Zbl1170.65328MR2117101
  8. [8] B. Després, Lax theorem and Finite Volume schemes. Math. Comput.73 (2004) 1203–1234. Zbl1053.65073MR2047085
  9. [9] J. Droniou, C. Le Potier, Construction and convergence study of local-maximum-principle preserving schemes for elliptic equations. SIAM J. Numer. Anal.49 (2011) 459–490. Zbl1227.65100MR2784880
  10. [10] L.C. Evans, Partial Differential Equations. Rhode Island: American Mathematical Society, Providence (1988). Zbl0902.35002MR2597943
  11. [11] R. Eymard, T. Gallouët and R. Herbin, Finite Volume Methods, vol. 7 of Handbook of Numerical Analysis. Edited by P.G. Ciarlet and J.L. Lions. North Holland (2000) 713–1020. Zbl0981.65095
  12. [12] R. Eymard, T. Gallouët and R. Herbin, Discretisation of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. SUSHI: a scheme using stabilization and hybrid interfaces, IMA J Numer Anal. 30 (2010) 1009–1043. Zbl1202.65144MR2727814
  13. [13] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer, New York (1983). Zbl0361.35003MR737190
  14. [14] A. Genty and C. Le Potier, Maximum and minimum principles for radionuclide transport calculations in geological radioactive waste repository: comparison between a mixed hybrid finite element method and finite volume element discretizations. Transp. Porous Media88 (2011) 65–85. MR2832454
  15. [15] E. Godlewski and P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws, vol. 118 of Applied Mathematical Sciences. Springer (1996). Zbl0860.65075MR1410987
  16. [16] R. Herbin, F. Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on general grids, in: 5th International Symposium on Finite Volumes for Complex Applications, edited by V.R. Eymard and J.M. Herard. Wiley (2008) 659–692. Zbl1246.76053MR2451465
  17. [17] Hermeline F., A finite volume method for approximating 3D diffusion operators on general meshes. J. Comput. Phys.228 (2009) 5763–5786. Zbl1168.76340MR2542915
  18. [18] Kershaw D., Differencing of the diffusion equation in Lagrangian hydrodynamic codes. J. Comput. Phys.39 (1981) 375–395. Zbl0467.76080MR612585
  19. [19] C. Le Potier, Correction non linéaire et principe du maximum pour la discrétisation d’opérateurs de diffusion avec des schémas volumes finis centrés sur les mailles. C. R. Acad. Sci. Paris, Ser. I 348 (2010) 691–695. Zbl1193.65188MR2652500
  20. [20] C. Lepotier, private communication (2012). 
  21. [21] R.J. Leveque, Numerical Methods for Conservation Laws, Lectures in Mathematics. ETH-Zurich Birkhauser-Verlag, Basel (1990). Zbl0847.65053MR1077828
  22. [22] K. Lipnikov, M. Shashkov, I. Yotov, Local flux mimetic finite difference methods. Numer. Math.112 (2009) 115–152. Zbl1165.65063MR2481532
  23. [23] K. Lipnikov and M. Shashkov, A framework for developing a mimetic tensor artificial viscosity for Lagrangian hydrocodes on arbitrary polygonal meshes. J. Comput. Phys.229 (2010) 7911–7941. Zbl05786009MR2674310
  24. [24] K. Lipnikov, G. Manzini and D. Svyatskiy, Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems. J. Comput. Phys.230 (2011) 2620–2642. Zbl1218.65117MR2772934
  25. [25] P.L. Roe, Characteristic-based schemes for the Euler equations. Ann. Rev. Fluid Mech.18 (1986) 337–365. Zbl0624.76093MR828794
  26. [26] Z. Sheng, J. Yue, G. Yuan, Monotone Finite volume schemes of non-equilibrium radiation diffusion equations of distorted meshes, SIAM J. Sci. Comput.31 (2009) 2915–2934. Zbl1195.65115MR2520305
  27. [27] Yu.I. Shokin, The method of differential approximation, Springer-Verlag (1983). Zbl0511.65067MR704817
  28. [28] P. Sweby, High-resolution schemes using flux limiters for hyperbolic conservation-laws. SIAM J. Numer. Anal.21 (1984) 995–1011. Zbl0565.65048MR760628

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.