Mortar spectral method in axisymmetric domains
Saloua Mani Aouadi; Jamil Satouri
- Volume: 47, Issue: 1, page 33-55
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topMani Aouadi, Saloua, and Satouri, Jamil. "Mortar spectral method in axisymmetric domains." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 47.1 (2013): 33-55. <http://eudml.org/doc/273146>.
@article{ManiAouadi2013,
abstract = {We consider the Laplace equation posed in a three-dimensional axisymmetric domain. We reduce the original problem by a Fourier expansion in the angular variable to a countable family of two-dimensional problems. We decompose the meridian domain, assumed polygonal, in a finite number of rectangles and we discretize by a spectral method. Then we describe the main features of the mortar method and use the algorithm Strang Fix to improve the accuracy of our discretization.},
author = {Mani Aouadi, Saloua, Satouri, Jamil},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {axisymmetric domains; mortar method; spectral methods; Laplace equation; Fourier expansion; a priori error estimates; numerical experiments; convergence},
language = {eng},
number = {1},
pages = {33-55},
publisher = {EDP-Sciences},
title = {Mortar spectral method in axisymmetric domains},
url = {http://eudml.org/doc/273146},
volume = {47},
year = {2013},
}
TY - JOUR
AU - Mani Aouadi, Saloua
AU - Satouri, Jamil
TI - Mortar spectral method in axisymmetric domains
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2013
PB - EDP-Sciences
VL - 47
IS - 1
SP - 33
EP - 55
AB - We consider the Laplace equation posed in a three-dimensional axisymmetric domain. We reduce the original problem by a Fourier expansion in the angular variable to a countable family of two-dimensional problems. We decompose the meridian domain, assumed polygonal, in a finite number of rectangles and we discretize by a spectral method. Then we describe the main features of the mortar method and use the algorithm Strang Fix to improve the accuracy of our discretization.
LA - eng
KW - axisymmetric domains; mortar method; spectral methods; Laplace equation; Fourier expansion; a priori error estimates; numerical experiments; convergence
UR - http://eudml.org/doc/273146
ER -
References
top- [1] A.B. Abdallah, F.B. Belgacem, Y. Maday and F. Rapetti, Mortaring the two-dimensional edge finite elements for the discretization of some electromagnetic models. Math. Mod. Methods Appl. Sci.14 (2004) 1635–1656. Zbl1100.78017MR2103094
- [2] M. Azaïez, C. Bernardi, M. Dauge and Y. Maday, Spectral Methods for Axisymetric Domains. Series in Appl. Math. 3 (1999). Zbl0929.35001
- [3] F.B. Belgacem, C. Bernardi and F. Rapetti, Numerical analysis of a model for an axisymmetric guide for electromagnetic waves. Part I : The continuous problem and its Fourier expansion. Math. Meth. Appl. Sci. 28 (2005) 2007–2029. Zbl1125.35099MR2176904
- [4] C. Bernardi and Y. Maday, Properties of some weighted Sobolev spaces and application to spectral approximations. SIAM J. Numer. Anal.26 (1989) 769–829. Zbl0675.65114MR1005511
- [5] C. Bernardi and Y. Maday, Approximations spectrales de problèmes aux limites elliptiques. Math. Appl. 10 (1992). Zbl0773.47032
- [6] C. Bernardi, M. Dauge and M. Azaïez, Numerical Analysis and Spectral Methods in Axisymetric Problems. Rapport Interne, Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie (1995).
- [7] S. Bertoluzza, S. Falletta and V. Perrier, The Mortar method in the wavelet context. Model. Math. Anal. Numer.35 (2001) 647–673. Zbl0995.65131MR1862873
- [8] H. Brezis, Analyse fonctionnelle, in Théorie et Applications. Masson, Paris (1983). Zbl1147.46300MR697382
- [9] N. Chorfi, Traitement de singularités géométriques par méthode d’éléments spectraux avec joints. Thèse de l’Université Pierre et Marie Curie, Paris VI (1998).
- [10] M. Dauge, Elliptic Boundary Value Problems on Corner Domains. Lect. Notes Math. 1341 (1988). Zbl0668.35001MR961439
- [11] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, in Theory and Algorithms. Springer-Verlag (1986). Zbl0585.65077MR851383
- [12] P. Grisvard, Singularities in boundary value problems, in Collect. RMA 22 (1992). Zbl0766.35001MR1173209
- [13] P. Le Tallec, Domain decomposition methods in computational mechanics, in Comput. Mech. Adv. North-Holland (1994). Zbl0802.73079MR1263805
- [14] R. Pasquetti, L.F. Pavarino, F. Rapetti and E. Zampieri, Overlapping Schwarz methods for Fekete and Gauss–Lobatto spectral elements. SIAM J. Scient. Comput.29 (2007) 1073–1092. Zbl1141.65394MR2318698
- [15] Y. Maday, C. Mavriplis and A.T. Patera, Nonconforming mortar element methods : application to spectral discretizations, in Domain decomposition methods. SIAM (1989) 392–418. Zbl0692.65055MR992030
- [16] J. Satouri, Méthodes d’éléments spectraux avec joints pour des géométries axisymétriques. Thèse de l’Université Pierre et Marie Curie, Paris VI (2010).
- [17] G. Strang and G.J. Fix, An Analysis of the Finite Element Method, in Automatic Computation. Prentice Hall Serie (1973). Zbl0356.65096MR443377
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.