# Solutions of Ginzburg-Landau equations and critical points of the renormalized energy

Annales de l'I.H.P. Analyse non linéaire (1995)

- Volume: 12, Issue: 5, page 599-622
- ISSN: 0294-1449

## Access Full Article

top## How to cite

topHua Lin, Fang. "Solutions of Ginzburg-Landau equations and critical points of the renormalized energy." Annales de l'I.H.P. Analyse non linéaire 12.5 (1995): 599-622. <http://eudml.org/doc/78369>.

@article{HuaLin1995,

author = {Hua Lin, Fang},

journal = {Annales de l'I.H.P. Analyse non linéaire},

keywords = {motion of vortices; Ginzburg-Landau equation},

language = {eng},

number = {5},

pages = {599-622},

publisher = {Gauthier-Villars},

title = {Solutions of Ginzburg-Landau equations and critical points of the renormalized energy},

url = {http://eudml.org/doc/78369},

volume = {12},

year = {1995},

}

TY - JOUR

AU - Hua Lin, Fang

TI - Solutions of Ginzburg-Landau equations and critical points of the renormalized energy

JO - Annales de l'I.H.P. Analyse non linéaire

PY - 1995

PB - Gauthier-Villars

VL - 12

IS - 5

SP - 599

EP - 622

LA - eng

KW - motion of vortices; Ginzburg-Landau equation

UR - http://eudml.org/doc/78369

ER -

## References

top- [BBH] F. Bethuel, H. Brezis and F. Helein, Ginzburg-Landau vertices, Birkhaüser, Boston, 1994. Zbl0802.35142MR1269538
- [BBH2] F. Bethuel, H. Brezis and F. Helein, Asymptotics for the minimization of a Ginzburg-Landau functional, Cal. variations and P.D.E., Vol. 1#2, 1993, pp. 123-148. Zbl0834.35014MR1261720
- [BMR] H. Brezis, F. Merle and T. Riviere, Quantization effects, for -Δu = u(1-(u)2) in R2, preprint.
- [CL] Y.M. Chen and F.H. Lin, Evaluation of harmonic maps with the Dirichlet boundary condition, Comm. in Analysis and Geometry, Vol. 1#3, 1993, pp. 327-346. Zbl0845.35049MR1266472
- [CS] Y.M. Chen and M. Struwe, Existence and partial regularity for heat flow for harmonic maps, Math. Z, Vol. 201, 1989, pp. 83-103. Zbl0652.58024MR990191
- [HL] R. Hardt and F.H. Lin, Singularities for p-energy minimizing unit vector fields on planar domains, to appear in Cal. variation and P. D. E. Zbl0828.58008
- [E] E. Weinan, Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity, preprint. Zbl0814.34039MR1297726
- [LSU] O.A. Ladyzenskaya, N.A. Solonnikov and N.N. Uralseva, Linear and quasilinear equations of parabolic type, Translations of AMS, Mon. #23 (196X).
- [N] J. Neu, Vortex dynamics of complex scalar fields, Physics D., Vol. 43, 1990, pp. 384-406. Zbl0711.35024
- [PR] L. Pismen and J. Rubinstein, Dynamics of defects, in nematics, mathematical and physical aspects, J. M. Coron et al. eds, Kluwer Pubs., 1991. MR1178081
- [R] P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Conf. Board of the Math. Sci., by AMS #65. Zbl0609.58002MR845785
- [RS] J. Rubinstein and P. Sternberg, On the Slow Motion of Vortices in the Ginzburg-Landau heat flow, preprint. Zbl0838.35102MR1356453
- [S] L. Simon, Asymptotics for a class of non-linear evolution equations, with applications to geometric problems, Annals of Math., Vol. 118, 1983, pp. 527- 571. Zbl0549.35071MR727703
- [St] M. Struwe, On the asymptotic behavior of minimizers of the Ginsburg-Landau model in 2 dimensions, J. Diff. Int. Eqs., Vol. 7, 1994. Zbl0809.35031MR1269674
- [St2] M. Struwe, On the evolution of harmonic maps of Riemannian surfaces, Comment. Math. Helv., Vol. 60, 1985, pp. 558-581. Zbl0595.58013MR826871

## Citations in EuDML Documents

top- Feng Zhou, Qing Zhou, A remark on multiplicity of solutions for the Ginzburg-Landau equation
- Tristan Rivière, Line vortices in the U(1) Higgs model
- Robert L. Jerrard, Halil Mete Soner, Scaling limits and regularity results for a class of Ginzburg-Landau systems
- Noel J. Walkington, Numerical approximation of nematic liquid crystal flows governed by the Ericksen-Leslie equations
- Luigi Ambrosio, Halil Mete Soner, A measure theoretic approach to higher codimension mean curvature flows
- Noel J. Walkington, Numerical approximation of nematic liquid crystal flows governed by the Ericksen-Leslie equations

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.