A Galerkin strategy with Proper Orthogonal Decomposition for parameter-dependent problems – Analysis, assessments and applications to parameter estimation
D. Chapelle; A. Gariah; P. Moireau; J. Sainte-Marie
- Volume: 47, Issue: 6, page 1821-1843
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topChapelle, D., et al. "A Galerkin strategy with Proper Orthogonal Decomposition for parameter-dependent problems – Analysis, assessments and applications to parameter estimation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 47.6 (2013): 1821-1843. <http://eudml.org/doc/273237>.
@article{Chapelle2013,
abstract = {We address the issue of parameter variations in POD approximations of time-dependent problems, without any specific restriction on the form of parameter dependence. Considering a parabolic model problem, we propose a POD construction strategy allowing us to obtain some a priori error estimates controlled by the POD remainder – in the construction procedure – and some parameter-wise interpolation errors for the model solutions. We provide a thorough numerical assessment of this strategy with the FitzHugh − Nagumo 1D model. Finally, we give detailed illustrations of the approach in two parameter estimation applications, the first in a variational estimation framework with the FitzHugh − Nagumo model, and the second with a beating heart mechanical model for which we employ a sequential estimation method to characterize model parameters using real image data in a clinical case.},
author = {Chapelle, D., Gariah, A., Moireau, P., Sainte-Marie, J.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {proper orthogonal decomposition; parameter variations; estimation; Fitzhugh − Nagumo equations; cardiac modeling; FitzHugh-Nagumo equations; parabolic model problem; beating heart mechanical model},
language = {eng},
number = {6},
pages = {1821-1843},
publisher = {EDP-Sciences},
title = {A Galerkin strategy with Proper Orthogonal Decomposition for parameter-dependent problems – Analysis, assessments and applications to parameter estimation},
url = {http://eudml.org/doc/273237},
volume = {47},
year = {2013},
}
TY - JOUR
AU - Chapelle, D.
AU - Gariah, A.
AU - Moireau, P.
AU - Sainte-Marie, J.
TI - A Galerkin strategy with Proper Orthogonal Decomposition for parameter-dependent problems – Analysis, assessments and applications to parameter estimation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2013
PB - EDP-Sciences
VL - 47
IS - 6
SP - 1821
EP - 1843
AB - We address the issue of parameter variations in POD approximations of time-dependent problems, without any specific restriction on the form of parameter dependence. Considering a parabolic model problem, we propose a POD construction strategy allowing us to obtain some a priori error estimates controlled by the POD remainder – in the construction procedure – and some parameter-wise interpolation errors for the model solutions. We provide a thorough numerical assessment of this strategy with the FitzHugh − Nagumo 1D model. Finally, we give detailed illustrations of the approach in two parameter estimation applications, the first in a variational estimation framework with the FitzHugh − Nagumo model, and the second with a beating heart mechanical model for which we employ a sequential estimation method to characterize model parameters using real image data in a clinical case.
LA - eng
KW - proper orthogonal decomposition; parameter variations; estimation; Fitzhugh − Nagumo equations; cardiac modeling; FitzHugh-Nagumo equations; parabolic model problem; beating heart mechanical model
UR - http://eudml.org/doc/273237
ER -
References
top- [1] D. Amsallem and C. Farhat, An online method for interpolating linear parametric reduced-order models. SIAM J. Sci. Comput. 33 (2011) 2169. Zbl1269.65059MR2837528
- [2] H.T. Banks, M.L. Joyner, B. Winchesky and W.P. Winfree, Nondestructive evaluation using a reduced-order computational methodology. Inverse Problems16 (2000) 1–17. Zbl0960.35107MR1776475
- [3] G. Berkooz, P. Holmes and J.L. Lumley, The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech.25 (1993) 539–575. MR1204279
- [4] A. Buffa, Y. Maday, A.T. Patera, C. Prud’homme and G. Turinici, A priori convergence of the greedy algorithm for the parametrized reduced basis method. ESAIM: M2AN 46 (2012) 595–603. Zbl1272.65084
- [5] R. Chabiniok, P. Moireau, P.-F. Lesault, A. Rahmouni, J.-F. Deux and D. Chapelle, Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model. Biomech. Model. Mechanobiol. 11 (2012) 609–630.
- [6] D. Chapelle and K.J. Bathe, The inf-sup test. Comput. Struct.47 (1993) 537–545. Zbl0780.73074MR1224095
- [7] D. Chapelle, A. Gariah and J. Sainte-Marie, Galerkin approximation with Proper Orthogonal Decomposition: new error estimates and illustrative examples. ESAIM: M2AN 46 (2012) 731–757. Zbl1273.65125MR2891468
- [8] D. Chapelle, P. Le Tallec, P. Moireau and M. Sorine, An energy-preserving muscle tissue model: formulation and compatible discretizations. J. Multiscale Comput. Engrg.10 (2012) 189–211.
- [9] G. Chavent, Nonlinear Least Squares for Inverse Problems: Theoretical foundations and step-by-step guide for applications. Scientific Computation. Springer, New York (2009). Zbl1191.65062MR2554448
- [10] P.G. Ciarlet and P.A. Raviart, General Lagrange and Hermite interpolation in R with applications to finite element methods. Arch. Rational Mech. Anal.46 (1972) 177–199. Zbl0243.41004MR336957
- [11] R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane. Biophys. J.1 (1961) 445–466. MR702215
- [12] D. Galbally, K. Fidkowski, K. Willcox and O. Ghattas, Non-linear model reduction for uncertainty quantification in large-scale inverse problems. International J. Numer. Methods Engrg. 81 (2010) 1581—1608. Zbl1183.76837MR2642821
- [13] B. Haasdonk, Convergence rates of the POD-greedy method. ESAIM: M2AN 47 (2012) 859–873. Zbl1277.65074MR3056412
- [14] S. Julier, J. Uhlmann and H. Durrant-Whyte, A new method for the nonlinear transformation of means and covariances in filter and estimators. IEEE Trans. Automat. Contr.45 (2000) 447–482. Zbl0973.93053MR1762859
- [15] K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal.40 (2002) 492–515. Zbl1075.65118MR1921667
- [16] A. Manzoni, A. Quarteroni and G. Rozza, Shape optimization for viscous flows by reduced basis methods and free form deformation. Int. J. Numer. Methods in Fluids70 (2012) 646–670. MR2973041
- [17] P. Moireau and D. Chapelle, Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems. ESAIM: COCV 17 (2011) 380–405. Zbl1243.93114MR2801324
- [18] P. Moireau, D. Chapelle and P. Le Tallec, Joint state and parameter estimation for distributed mechanical systems. Comput. Methods Appl. Mechanics Engrg.197 (2008) 659–677. Zbl1169.74439MR2397009
- [19] P. Moireau, D. Chapelle and P. Le Tallec, Filtering for distributed mechanical systems using position measurements: Perspectives in medical imaging. Inverse Problems 25 (2009) 035010. Zbl1169.35393MR2480180
- [20] J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon. Proc. of IRE50 (1962) 2061–2070.
- [21] D.-T. Pham, J. Verron and L. Gourdeau, Filtres de Kalman singuliers évolutifs pour l’assimilation de données en océanographie. C.R. l’Acad. Sci. – Series IIA 326 (1998) 255–260.
- [22] C. Prud’homme, D.V. Rovas, K. Veroy, L. Machiels, Y. Maday, A.T. Patera and G. Turinici, Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods. J. Fluids Engrg.124 (2002) 70–80.
- [23] J. Sainte-Marie, D. Chapelle, R. Cimrman and M. Sorine, Modeling and estimation of the cardiac electromechanical activity. Comput. Struct.84 (2006) 1743–1759. MR2273354
- [24] D. Simon, Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches. Wiley-Interscience (2006).
- [25] S.A. Smolyak. Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR4 (1963) 240–243. Zbl0202.39901
- [26] K. Veroy and A.T. Patera, Certified real-time solution of the parametrized steady incompressible navier-stokes equations. Internat. J. Numer. Methods Fluids47 (2004) 773–788. Zbl1134.76326MR2123791
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.