A Galerkin strategy with Proper Orthogonal Decomposition for parameter-dependent problems – Analysis, assessments and applications to parameter estimation

D. Chapelle; A. Gariah; P. Moireau; J. Sainte-Marie

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2013)

  • Volume: 47, Issue: 6, page 1821-1843
  • ISSN: 0764-583X

Abstract

top
We address the issue of parameter variations in POD approximations of time-dependent problems, without any specific restriction on the form of parameter dependence. Considering a parabolic model problem, we propose a POD construction strategy allowing us to obtain some a priori error estimates controlled by the POD remainder – in the construction procedure – and some parameter-wise interpolation errors for the model solutions. We provide a thorough numerical assessment of this strategy with the FitzHugh − Nagumo 1D model. Finally, we give detailed illustrations of the approach in two parameter estimation applications, the first in a variational estimation framework with the FitzHugh − Nagumo model, and the second with a beating heart mechanical model for which we employ a sequential estimation method to characterize model parameters using real image data in a clinical case.

How to cite

top

Chapelle, D., et al. "A Galerkin strategy with Proper Orthogonal Decomposition for parameter-dependent problems – Analysis, assessments and applications to parameter estimation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 47.6 (2013): 1821-1843. <http://eudml.org/doc/273237>.

@article{Chapelle2013,
abstract = {We address the issue of parameter variations in POD approximations of time-dependent problems, without any specific restriction on the form of parameter dependence. Considering a parabolic model problem, we propose a POD construction strategy allowing us to obtain some a priori error estimates controlled by the POD remainder – in the construction procedure – and some parameter-wise interpolation errors for the model solutions. We provide a thorough numerical assessment of this strategy with the FitzHugh − Nagumo 1D model. Finally, we give detailed illustrations of the approach in two parameter estimation applications, the first in a variational estimation framework with the FitzHugh − Nagumo model, and the second with a beating heart mechanical model for which we employ a sequential estimation method to characterize model parameters using real image data in a clinical case.},
author = {Chapelle, D., Gariah, A., Moireau, P., Sainte-Marie, J.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {proper orthogonal decomposition; parameter variations; estimation; Fitzhugh − Nagumo equations; cardiac modeling; FitzHugh-Nagumo equations; parabolic model problem; beating heart mechanical model},
language = {eng},
number = {6},
pages = {1821-1843},
publisher = {EDP-Sciences},
title = {A Galerkin strategy with Proper Orthogonal Decomposition for parameter-dependent problems – Analysis, assessments and applications to parameter estimation},
url = {http://eudml.org/doc/273237},
volume = {47},
year = {2013},
}

TY - JOUR
AU - Chapelle, D.
AU - Gariah, A.
AU - Moireau, P.
AU - Sainte-Marie, J.
TI - A Galerkin strategy with Proper Orthogonal Decomposition for parameter-dependent problems – Analysis, assessments and applications to parameter estimation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2013
PB - EDP-Sciences
VL - 47
IS - 6
SP - 1821
EP - 1843
AB - We address the issue of parameter variations in POD approximations of time-dependent problems, without any specific restriction on the form of parameter dependence. Considering a parabolic model problem, we propose a POD construction strategy allowing us to obtain some a priori error estimates controlled by the POD remainder – in the construction procedure – and some parameter-wise interpolation errors for the model solutions. We provide a thorough numerical assessment of this strategy with the FitzHugh − Nagumo 1D model. Finally, we give detailed illustrations of the approach in two parameter estimation applications, the first in a variational estimation framework with the FitzHugh − Nagumo model, and the second with a beating heart mechanical model for which we employ a sequential estimation method to characterize model parameters using real image data in a clinical case.
LA - eng
KW - proper orthogonal decomposition; parameter variations; estimation; Fitzhugh − Nagumo equations; cardiac modeling; FitzHugh-Nagumo equations; parabolic model problem; beating heart mechanical model
UR - http://eudml.org/doc/273237
ER -

References

top
  1. [1] D. Amsallem and C. Farhat, An online method for interpolating linear parametric reduced-order models. SIAM J. Sci. Comput. 33 (2011) 2169. Zbl1269.65059MR2837528
  2. [2] H.T. Banks, M.L. Joyner, B. Winchesky and W.P. Winfree, Nondestructive evaluation using a reduced-order computational methodology. Inverse Problems16 (2000) 1–17. Zbl0960.35107MR1776475
  3. [3] G. Berkooz, P. Holmes and J.L. Lumley, The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech.25 (1993) 539–575. MR1204279
  4. [4] A. Buffa, Y. Maday, A.T. Patera, C. Prud’homme and G. Turinici, A priori convergence of the greedy algorithm for the parametrized reduced basis method. ESAIM: M2AN 46 (2012) 595–603. Zbl1272.65084
  5. [5] R. Chabiniok, P. Moireau, P.-F. Lesault, A. Rahmouni, J.-F. Deux and D. Chapelle, Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model. Biomech. Model. Mechanobiol. 11 (2012) 609–630. 
  6. [6] D. Chapelle and K.J. Bathe, The inf-sup test. Comput. Struct.47 (1993) 537–545. Zbl0780.73074MR1224095
  7. [7] D. Chapelle, A. Gariah and J. Sainte-Marie, Galerkin approximation with Proper Orthogonal Decomposition: new error estimates and illustrative examples. ESAIM: M2AN 46 (2012) 731–757. Zbl1273.65125MR2891468
  8. [8] D. Chapelle, P. Le Tallec, P. Moireau and M. Sorine, An energy-preserving muscle tissue model: formulation and compatible discretizations. J. Multiscale Comput. Engrg.10 (2012) 189–211. 
  9. [9] G. Chavent, Nonlinear Least Squares for Inverse Problems: Theoretical foundations and step-by-step guide for applications. Scientific Computation. Springer, New York (2009). Zbl1191.65062MR2554448
  10. [10] P.G. Ciarlet and P.A. Raviart, General Lagrange and Hermite interpolation in R with applications to finite element methods. Arch. Rational Mech. Anal.46 (1972) 177–199. Zbl0243.41004MR336957
  11. [11] R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane. Biophys. J.1 (1961) 445–466. MR702215
  12. [12] D. Galbally, K. Fidkowski, K. Willcox and O. Ghattas, Non-linear model reduction for uncertainty quantification in large-scale inverse problems. International J. Numer. Methods Engrg. 81 (2010) 1581—1608. Zbl1183.76837MR2642821
  13. [13] B. Haasdonk, Convergence rates of the POD-greedy method. ESAIM: M2AN 47 (2012) 859–873. Zbl1277.65074MR3056412
  14. [14] S. Julier, J. Uhlmann and H. Durrant-Whyte, A new method for the nonlinear transformation of means and covariances in filter and estimators. IEEE Trans. Automat. Contr.45 (2000) 447–482. Zbl0973.93053MR1762859
  15. [15] K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal.40 (2002) 492–515. Zbl1075.65118MR1921667
  16. [16] A. Manzoni, A. Quarteroni and G. Rozza, Shape optimization for viscous flows by reduced basis methods and free form deformation. Int. J. Numer. Methods in Fluids70 (2012) 646–670. MR2973041
  17. [17] P. Moireau and D. Chapelle, Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems. ESAIM: COCV 17 (2011) 380–405. Zbl1243.93114MR2801324
  18. [18] P. Moireau, D. Chapelle and P. Le Tallec, Joint state and parameter estimation for distributed mechanical systems. Comput. Methods Appl. Mechanics Engrg.197 (2008) 659–677. Zbl1169.74439MR2397009
  19. [19] P. Moireau, D. Chapelle and P. Le Tallec, Filtering for distributed mechanical systems using position measurements: Perspectives in medical imaging. Inverse Problems 25 (2009) 035010. Zbl1169.35393MR2480180
  20. [20] J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon. Proc. of IRE50 (1962) 2061–2070. 
  21. [21] D.-T. Pham, J. Verron and L. Gourdeau, Filtres de Kalman singuliers évolutifs pour l’assimilation de données en océanographie. C.R. l’Acad. Sci. – Series IIA 326 (1998) 255–260. 
  22. [22] C. Prud’homme, D.V. Rovas, K. Veroy, L. Machiels, Y. Maday, A.T. Patera and G. Turinici, Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods. J. Fluids Engrg.124 (2002) 70–80. 
  23. [23] J. Sainte-Marie, D. Chapelle, R. Cimrman and M. Sorine, Modeling and estimation of the cardiac electromechanical activity. Comput. Struct.84 (2006) 1743–1759. MR2273354
  24. [24] D. Simon, Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches. Wiley-Interscience (2006). 
  25. [25] S.A. Smolyak. Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR4 (1963) 240–243. Zbl0202.39901
  26. [26] K. Veroy and A.T. Patera, Certified real-time solution of the parametrized steady incompressible navier-stokes equations. Internat. J. Numer. Methods Fluids47 (2004) 773–788. Zbl1134.76326MR2123791

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.