Some non-linear evolution equations
Jacques-Louis Lions; W.A. Strauss
Bulletin de la Société Mathématique de France (1965)
- Volume: 93, page 43-96
- ISSN: 0037-9484
Access Full Article
topHow to cite
topLions, Jacques-Louis, and Strauss, W.A.. "Some non-linear evolution equations." Bulletin de la Société Mathématique de France 93 (1965): 43-96. <http://eudml.org/doc/87073>.
@article{Lions1965,
author = {Lions, Jacques-Louis, Strauss, W.A.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {functional analysis},
language = {eng},
pages = {43-96},
publisher = {Société mathématique de France},
title = {Some non-linear evolution equations},
url = {http://eudml.org/doc/87073},
volume = {93},
year = {1965},
}
TY - JOUR
AU - Lions, Jacques-Louis
AU - Strauss, W.A.
TI - Some non-linear evolution equations
JO - Bulletin de la Société Mathématique de France
PY - 1965
PB - Société mathématique de France
VL - 93
SP - 43
EP - 96
LA - eng
KW - functional analysis
UR - http://eudml.org/doc/87073
ER -
References
top- [1]AUBIN (J.-P.). — Un théorème de compacité, C. R. Acad. Sc. Paris, t. 256, 1963, p. 5042-5044. Zbl0195.13002MR27 #2832
- [2]BROWDER (F. E.). — Nonlinear elliptic boundary value problems, Bull. Amer, math. Soc., t. 69, 1963, p. 862-874. Zbl0127.31901MR27 #6048
- [3]BROWDER (F. E.). — Strongly nonlinear parabolic boundary value problems (to appear). Zbl0143.33501
- [4]BROWDER (F. E.). — Non-linear equations of evolution, Annals of Math (to appear). Zbl0127.33602
- [5]DIONNE (P. A.). — Sur les problèmes de Cauchy hyperboliques bien posés, J. Anal. math., Jérusalem, t. 10, 1962-1963, p. 1-90. Zbl0112.32301MR27 #472
- [6]HOPF (E.). — Ueber die Anfangswertaufgabe für die hydrodynamischen Grund-gleichungen, Math. Nachr., t. 4, 1951, p. 213-231. Zbl0042.10604MR14,327b
- [7]JÖRGENS (K.). — Das Anfangswertproblem im Grossen für eine Klasse nicht-linearer Wellengleichungen, Math. Z., t. 77, 1961, p. 295-308. Zbl0111.09105
- [8]LERAY (J.). — Hyperbolic differential equations. — Princeton, 1952 (multigraphié).
- [9]LIONS (J. L.). — Équations différentielles opérationnelles. — Berlin, Springer, 1961. (Grundlehren der mathematischen Wissenschaften, 111). Zbl0098.31101
- [10]LIONS (J. L.). — Quelques remarques sur les équations différentielles opérationnelles du 1er ordre, Rend. Semin. mat. Padova, t. 33, 1963, p. 213-225. Zbl0117.10201
- [11]LIONS (J. L.) et MAGENES (E.). — Problèmes aux limites non homogènes, III, Ann. Scuola Norm. Sup. Pisa, t. 15, 1961, p. 311-326. Zbl0115.31302MR25 #4351
- [12]LIONS (J. L.) et PRODI (G.). — Un théorème d'existence et unicité dans les équations de Navier-Stokes en dimension 2, C. R. Acad. Sc. Paris, t. 248, 1959, p. 3519-3521. Zbl0091.42105MR21 #7676
- [13]LIONS (J. L.) et STRAUSS (W. A.). — Sur certains problèmes hyperboliques non linéaires, C. R. Acad. Sc. Paris, t. 257, 1963, p. 3267-3270. Zbl0117.06303MR29 #3905
- [14]MINTY (G. J.). — Monotone (non-linear) operators in Hilbert space, Duke Math. J., t. 29, 1962, p. 341-346. Zbl0111.31202MR29 #6319
- [15]MINTY (G. J.). — On a “monotonicity” method for the solution of non-linear equations in Banach spaces, Proc. Nat. Acad. Sc. U. S. A., t. 50, 1963, p. 1038-1041. Zbl0124.07303MR28 #5358
- [16]NIKOLSKII (S. M.). — On embedding, extension and approximation of differentiable functions, Uspekhi Mat. Nauk., t. 16, 1961, p. 63-114. Zbl0117.29101MR26 #6757
- [17]PRODI (G.). — Soluzioni periodiche di equazioni a derivati parziali di tipo iperbolico non lineari, Annali di Mat. pura ed appl., t. 42, 1956, p. 25-49. Zbl0072.10101MR19,749a
- [18]SEGAL (I. E.). — Non-linear semigroups, Annals of Math., t. 78, 1963, p. 339-364. Zbl0204.16004MR27 #2879
- [19]SEGAL (I. E.). — The global Cauchy problem for a relativistic scalar field with power interaction, Bull. Soc. math. France, t. 91, 1963, p. 129-135. Zbl0178.45403MR27 #3928
- [20]SOBOLEVSKIJ (P. E.). — Second-order differential equations in Banach space, Soviet Math. (Doklady), t. 151, 1963, p. 1394-1398. Zbl0149.35902
- [21]TORELLI (G.). — Un complemento ad un teorema di J.-L. Lions sulle equazioni differenziali astratte del secondo ordine (to appear). Zbl0197.12201
- [22]VIŠIK (M. I.). — Strongly elliptic quasi-linear systems of differential equations in divergence form, Trudy Mosk. Mat. Obšč., t. 12, 1963, p. 125-184. Zbl0144.36201
- [23]VIŠIK (M. I.). — On the solution of boundary-value problems for quasi-linear parabolic equations of arbitrary order, Mat. Sbornik, t. 59, (101), 1962, p. 289-325.
- [24]YAMAGUTI (M.). — On the global solution of the Cauchy problem for some non-linear hyperbolic equations, Mem. Fac. Eng., Kyoto Univ., t. 24, 1962, p. 482-487.
- [25]YAMAGUTI (M.). — On the a priori estimate for solutions of the Cauchy problem for some non-linear wave equations, Kyoto math. J., t. 2, 1962, p. 55-60. Zbl0114.05101MR25 #4261
- [26]MIZOHATA (S.) and YAMAGUTI (M.). — Mixed problem for some semi-linear wave equation, Kyoto math. J., t. 2, 1962, p. 61-78. Zbl0114.05102MR26 #489
- [27]KATO (T.), (to appear).
Citations in EuDML Documents
top- Gérard Gagneux, Guy Vallet, Sur des problèmes d’asservissements stratigraphiques
- Gérard Gagneux, Guy Vallet, Sur des problèmes d'asservissements stratigraphiques
- Marie Kopáčková, Remarks on bounded solutions of a semilinear dissipative hyperbolic equation
- Robert Altmann, Moving Dirichlet boundary conditions
- Brahim Hajouj, Perturbations singulières d'équations hyperboliques du second ordre non linéaires
- Brahim Hajouj, Monique Madaune-Tort, Perturbations singulières pour une équation hyperbolique dégénérée
- Konrad Gröger, An iteration method for nonlinear second order evolution equations
- Jacques Robert, Équations d'évolution paraboliques fortement non linéaires
- J. M. Ghidaglia, R. Temam, Regularity of the solutions of second order evolution equations and their attractors
- Fabio Zanolin, Periodic solutions for second order differential systems with damping
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.