Mathematical analysis for the peridynamic nonlocal continuum theory

Qiang Du; Kun Zhou

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2011)

  • Volume: 45, Issue: 2, page 217-234
  • ISSN: 0764-583X

Abstract

top
We develop a functional analytical framework for a linear peridynamic model of a spring network system in any space dimension. Various properties of the peridynamic operators are examined for general micromodulus functions. These properties are utilized to establish the well-posedness of both the stationary peridynamic model and the Cauchy problem of the time dependent peridynamic model. The connections to the classical elastic models are also provided.

How to cite

top

Du, Qiang, and Zhou, Kun. "Mathematical analysis for the peridynamic nonlocal continuum theory." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 45.2 (2011): 217-234. <http://eudml.org/doc/273242>.

@article{Du2011,
abstract = {We develop a functional analytical framework for a linear peridynamic model of a spring network system in any space dimension. Various properties of the peridynamic operators are examined for general micromodulus functions. These properties are utilized to establish the well-posedness of both the stationary peridynamic model and the Cauchy problem of the time dependent peridynamic model. The connections to the classical elastic models are also provided.},
author = {Du, Qiang, Zhou, Kun},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {peridynamic model; nonlocal continuum theory; well-posedness; Navier equation; spring network system; Cauchy problem; classical elastic models},
language = {eng},
number = {2},
pages = {217-234},
publisher = {EDP-Sciences},
title = {Mathematical analysis for the peridynamic nonlocal continuum theory},
url = {http://eudml.org/doc/273242},
volume = {45},
year = {2011},
}

TY - JOUR
AU - Du, Qiang
AU - Zhou, Kun
TI - Mathematical analysis for the peridynamic nonlocal continuum theory
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2011
PB - EDP-Sciences
VL - 45
IS - 2
SP - 217
EP - 234
AB - We develop a functional analytical framework for a linear peridynamic model of a spring network system in any space dimension. Various properties of the peridynamic operators are examined for general micromodulus functions. These properties are utilized to establish the well-posedness of both the stationary peridynamic model and the Cauchy problem of the time dependent peridynamic model. The connections to the classical elastic models are also provided.
LA - eng
KW - peridynamic model; nonlocal continuum theory; well-posedness; Navier equation; spring network system; Cauchy problem; classical elastic models
UR - http://eudml.org/doc/273242
ER -

References

top
  1. [1] B. Alali and R. Lipton, Multiscale Analysis of Heterogeneous Media in the Peridynamic Formulation. IMA preprint, 2241 (2009). Zbl1320.74029
  2. [2] E. Askari, F. Bobaru, R.B. Lehoucq, M.L. Parks, S.A. Silling and O. Weckner, Peridynamics for multiscale materials modeling. J. Phys. Conf. Ser. 125 (2008) 012078. 
  3. [3] G. Aubert and P. Kornprobst, Can the nonlocal characterization of Sobolev spaces by Bourgain et al. be useful for solving variational problems? SIAM J. Numer. Anal. 47 (2009) 844–860. Zbl1189.35067MR2485435
  4. [4] T. Belytschko and S.P. Xiao, A bridging domain method for coupling continua with molecular dynamics. Int. J. Mult. Comp. Eng.1 (2003) 115–126. Zbl1079.74509MR2069430
  5. [5] W. Curtin and R. Miller, Atomistic/continuum coupling methods in multi-scale materials modeling. Mod. Simul. Mater. Sci. Engineering 11 (2003) R33–R68. 
  6. [6] K. Dayal and K. Bhattacharya, Kinetics of phase transformations in the peridynamic formulation of continuum mechanics. J. Mech. Phys. Solids54 (2006) 1811–1842. Zbl1120.74690MR2244039
  7. [7] N. Dunford and J. Schwartz, Linear Operators, Part I: General Theory. Interscience, New York (1958). Zbl0084.10402MR1009162
  8. [8] E. Emmrich and O. Weckner, Analysis and numerical approximation of an integrodifferential equation modelling non-local effects in linear elasticity. Math. Mech. Solids12 (2005) 363–384. Zbl1175.74013MR2349159
  9. [9] E. Emmrich and O. Weckner, The peridynamic equation of motion in nonlocal elasticity theory, in III European Conference on Computational Mechanics – Solids, Structures and Coupled Problems in Engineering, C.A. Mota Soares, J.A.C. Martins, H.C. Rodrigues, J.A.C. Ambrosio, C.A.B. Pina, C.M. Mota Soares, E.B.R. Pereira and J. Folgado Eds., Lisbon, Springer (2006). Zbl1133.35098
  10. [10] E. Emmrich and O. Weckner, On the well-posedness of the linear peridynamic model and its convergence towards the Navier equation of linear elasticity. Commun. Math. Sci.5 (2007) 851–864. Zbl1133.35098MR2375050
  11. [11] J. Fish, M.A. Nuggehally, M.S. Shephard, C.R. Picu, S. Badia, M.L. Parks and M. Gunzburger, Concurrent AtC coupling based on a blend of the continuum stress and the atomistic force. Comp. Meth. Appl. Mech. Eng.196 (2007) 4548–4560. Zbl1173.74303MR2354453
  12. [12] M. Gunzburger and R. Lehoucq, A nonlocal vector calculus with application to nonlocal boundary value problems. Preprint (2009). Zbl1210.35057MR2728700
  13. [13] L. Hörmander, Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators. Springer, Berlin (1985). Zbl1115.35005
  14. [14] O.A. Ladyzhenskaya, The boundary value problems of mathematical physics. Springer-Verlag, New York (1985). Zbl0588.35003MR793735
  15. [15] R.B. Lehoucq and S.A. Silling, Statistical coarse-graining of molecular dynamics into peridynamics. Technical Report, SAND2007-6410, Sandia National Laboratories, Albuquerque and Livermore (2007). 
  16. [16] R.B. Lehoucq and S.A. Silling, Force flux and the peridynamic stress tensor. J. Mech. Phys. Solids56 (2008) 1566–1577. Zbl1171.74319MR2404022
  17. [17] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). Zbl0189.40603
  18. [18] R.E. Miller and E.B. Tadmor, The quasicontinuum method: Overview, applications, and current directions. J. Comp.-Aided Mater. Des.9 (2002) 203–239. 
  19. [19] S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids48 (2000) 175–209. Zbl0970.74030MR1727557
  20. [20] S.A. Silling, Linearized theory of peridynamic states. Sandia National Laboratories, SAND (2009) 2009–2458. Zbl1188.74008MR2592410
  21. [21] S.A. Silling and R.B. Lehoucq, Convergence of peridynamics to classical elasticity theory. J. Elasticity93 (2008) 13–37. Zbl1159.74316MR2430855
  22. [22] S.A. Silling, O. Weckner, E. Askari and F. Bobaru, Crack nucleation in a peridynamic solid. Preprint (2009). Zbl05774098
  23. [23] O. Weckner and R. Abeyaratne, The effect of long-range forces on the dynamics of a bar. J. Mech. Phys. Solids53 (2005) 705–728. Zbl1122.74431MR2116266
  24. [24] K. Zhou and Q. Du, Mathematical and Numerical Analysis of Peridynamic Models with Nonlocal Boundary Conditions. SIAM J. Numer. Anal. (submitted). Zbl1220.82074MR2733097

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.