Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system
Steve Bryson; Yekaterina Epshteyn; Alexander Kurganov; Guergana Petrova
- Volume: 45, Issue: 3, page 423-446
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBryson, Steve, et al. "Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 45.3 (2011): 423-446. <http://eudml.org/doc/273245>.
@article{Bryson2011,
abstract = {We introduce a new second-order central-upwind scheme for the Saint-Venant system of shallow water equations on triangular grids. We prove that the scheme both preserves “lake at rest” steady states and guarantees the positivity of the computed fluid depth. Moreover, it can be applied to models with discontinuous bottom topography and irregular channel widths. We demonstrate these features of the new scheme, as well as its high resolution and robustness in a number of numerical examples.},
author = {Bryson, Steve, Epshteyn, Yekaterina, Kurganov, Alexander, Petrova, Guergana},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {hyperbolic systems of conservation and balance laws; semi-discrete central-upwind schemes; Saint-Venant system of shallow water equations},
language = {eng},
number = {3},
pages = {423-446},
publisher = {EDP-Sciences},
title = {Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system},
url = {http://eudml.org/doc/273245},
volume = {45},
year = {2011},
}
TY - JOUR
AU - Bryson, Steve
AU - Epshteyn, Yekaterina
AU - Kurganov, Alexander
AU - Petrova, Guergana
TI - Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2011
PB - EDP-Sciences
VL - 45
IS - 3
SP - 423
EP - 446
AB - We introduce a new second-order central-upwind scheme for the Saint-Venant system of shallow water equations on triangular grids. We prove that the scheme both preserves “lake at rest” steady states and guarantees the positivity of the computed fluid depth. Moreover, it can be applied to models with discontinuous bottom topography and irregular channel widths. We demonstrate these features of the new scheme, as well as its high resolution and robustness in a number of numerical examples.
LA - eng
KW - hyperbolic systems of conservation and balance laws; semi-discrete central-upwind schemes; Saint-Venant system of shallow water equations
UR - http://eudml.org/doc/273245
ER -
References
top- [1] R. Abgrall, On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. J. Comput. Phys.114 (1994) 45–58. Zbl0822.65062MR1286187
- [2] N. Andrianov, Testing numerical schemes for the shallow water equations. Preprint available at http://www-ian.math.uni-magdeburg.de/home/andriano/CONSTRUCT/testing.ps.gz (2004).
- [3] P. Arminjon, M.-C. Viallon and A. Madrane, A finite volume extension of the Lax-Friedrichs and Nessyahu-Tadmor schemes for conservation laws on unstructured grids. Int. J. Comput. Fluid Dyn.9 (1997) 1–22. Zbl0913.76063MR1609613
- [4] E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput.25 (2004) 2050–2065. Zbl1133.65308MR2086830
- [5] F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. Frontiers in Math Series, Birkhäuser Verlag, Basel (2004). Zbl1086.65091MR2128209
- [6] S. Bryson and D. Levy, Balanced central schemes for the shallow water equations on unstructured grids. SIAM J. Sci. Comput.27 (2005) 532–552. Zbl1089.76036MR2202233
- [7] I. Christov and B. Popov, New nonoscillatory central schemes on unstructured triangulations for hyperbolic systems of conservation laws. J. Comput. Phys.227 (2008) 5736–5757. Zbl1151.65068MR2414928
- [8] A.J.C. de Saint-Venant, Théorie du mouvement non-permanent des eaux, avec application aux crues des rivière et à l'introduction des marées dans leur lit. C. R. Acad. Sci. Paris 73 (1871) 147–154. Zbl03.0482.04JFM03.0482.04
- [9] L.J. Durlofsky, B. Engquist and S. Osher, Triangle based adaptive stencils for the solution of hyperbolic conservation laws. J. Comput. Phys.98 (1992) 64–73. Zbl0747.65072
- [10] T. Gallouët, J.-M. Hérard and N. Seguin, Some approximate Godunov schemes to compute shallow-water equations with topography. Comput. Fluids32 (2003) 479–513. Zbl1084.76540MR1966639
- [11] J.-F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation. Discrete Contin. Dyn. Syst. Ser. B1 (2001) 89–102. Zbl0997.76023MR1821555
- [12] S. Gottlieb, C.-W. Shu and E. Tadmor, High order time discretization methods with the strong stability property. SIAM Rev.43 (2001) 89–112. Zbl0967.65098MR1854647
- [13] M.E. Hubbard, Multidimensional slope limiters for MUSCL-type finite volume schemes on unstructured grids. J. Comput. Phys.155 (1999) 54–74. Zbl0934.65109MR1716501
- [14] M.E. Hubbard, On the accuracy of one-dimensional models of steady converging/diverging open channel flows. Int. J. Numer. Methods Fluids35 (2001) 785–808. Zbl1014.76051
- [15] S. Jin, A steady-state capturing method for hyperbolic system with geometrical source terms. ESAIM: M2AN 35 (2001) 631–645. Zbl1001.35083MR1862872
- [16] S. Jin and X. Wen, Two interface-type numerical methods for computing hyperbolic systems with geometrical source terms having concentrations. SIAM J. Sci. Comput.26 (2005) 2079–2101. Zbl1083.35062MR2196590
- [17] D. Kröner, Numerical Schemes for Conservation Laws. Wiley, Chichester (1997). Zbl0872.76001
- [18] A. Kurganov and D. Levy, Central-upwind schemes for the Saint-Venant system. ESAIM: M2AN 36 (2002) 397–425. Zbl1137.65398MR1918938
- [19] A. Kurganov and C.-T. Lin, On the reduction of numerical dissipation in central-upwind schemes. Commun. Comput. Phys.2 (2007) 141–163. Zbl1164.65455MR2305919
- [20] A. Kurganov and G. Petrova, Central-upwind schemes on triangular grids for hyperbolic systems of conservation laws. Numer. Methods Partial Diff. Equ.21 (2005) 536–552. Zbl1071.65122MR2128595
- [21] A. Kurganov and G. Petrova, A second-order well-balanced positivity preserving scheme for the Saint-Venant system. Commun. Math. Sci.5 (2007) 133–160. Zbl1226.76008MR2310637
- [22] A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys.160 (2000) 214–282. Zbl0987.65085MR1756766
- [23] A. Kurganov and E. Tadmor, Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers. Numer. Methods Partial Diff. Equ.18 (2002) 584–608. Zbl1058.76046MR1919599
- [24] A. Kurganov, S. Noelle and G. Petrova, Semi-discrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput.23 (2001) 707–740. Zbl0998.65091MR1860961
- [25] R.J. LeVeque, Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys.146 (1998) 346–365. Zbl0931.76059MR1650496
- [26] R. LeVeque, Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathematics, Cambridge University Press (2002). Zbl1010.65040MR1925043
- [27] K.-A. Lie and S. Noelle, On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws. SIAM J. Sci. Comput.24 (2003) 1157–1174. Zbl1038.65078MR1976211
- [28] H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys.87 (1990) 408–463. Zbl0697.65068MR1047564
- [29] S. Noelle, N. Pankratz, G. Puppo and J. Natvig, Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. J. Comput. Phys.213 (2006) 474–499. Zbl1088.76037MR2207248
- [30] B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term. Calcolo38 (2001) 201–231. Zbl1008.65066MR1890353
- [31] G. Russo, Central schemes for balance laws, in Hyperbolic problems: theory, numerics, applications II, Internat. Ser. Numer. Math. 141, Birkhäuser, Basel (2001) 821–829. MR1871169
- [32] G. Russo, Central schemes for conservation laws with application to shallow water equations, in Trends and applications of mathematics to mechanics: STAMM 2002, S. Rionero and G. Romano Eds., Springer-Verlag Italia SRL (2005) 225–246. MR1910803
- [33] P.K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal.21 (1984) 995–1011. Zbl0565.65048MR760628
- [34] B. van Leer, Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov's method. J. Comput. Phys. 32 (1979) 101–136. Zbl0939.76063MR1703646
- [35] M. Wierse, A new theoretically motivated higher order upwind scheme on unstructured grids of simplices. Adv. Comput. Math.7 (1997) 303–335. Zbl0889.65103MR1449684
- [36] Y. Xing and C.-W. Shu, High order finite difference WENO schemes with the exact conservation property for the shallow water equations. J. Comput. Phys.208 (2005) 206–227. Zbl1114.76340MR2144699
- [37] Y. Xing and C.-W. Shu, A new approach of high order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. Commun. Comput. Phys.1 (2006) 100–134. Zbl1115.65096MR2216604
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.