Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system

Steve Bryson; Yekaterina Epshteyn; Alexander Kurganov; Guergana Petrova

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2011)

  • Volume: 45, Issue: 3, page 423-446
  • ISSN: 0764-583X

Abstract

top
We introduce a new second-order central-upwind scheme for the Saint-Venant system of shallow water equations on triangular grids. We prove that the scheme both preserves “lake at rest” steady states and guarantees the positivity of the computed fluid depth. Moreover, it can be applied to models with discontinuous bottom topography and irregular channel widths. We demonstrate these features of the new scheme, as well as its high resolution and robustness in a number of numerical examples.

How to cite

top

Bryson, Steve, et al. "Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 45.3 (2011): 423-446. <http://eudml.org/doc/273245>.

@article{Bryson2011,
abstract = {We introduce a new second-order central-upwind scheme for the Saint-Venant system of shallow water equations on triangular grids. We prove that the scheme both preserves “lake at rest” steady states and guarantees the positivity of the computed fluid depth. Moreover, it can be applied to models with discontinuous bottom topography and irregular channel widths. We demonstrate these features of the new scheme, as well as its high resolution and robustness in a number of numerical examples.},
author = {Bryson, Steve, Epshteyn, Yekaterina, Kurganov, Alexander, Petrova, Guergana},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {hyperbolic systems of conservation and balance laws; semi-discrete central-upwind schemes; Saint-Venant system of shallow water equations},
language = {eng},
number = {3},
pages = {423-446},
publisher = {EDP-Sciences},
title = {Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system},
url = {http://eudml.org/doc/273245},
volume = {45},
year = {2011},
}

TY - JOUR
AU - Bryson, Steve
AU - Epshteyn, Yekaterina
AU - Kurganov, Alexander
AU - Petrova, Guergana
TI - Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2011
PB - EDP-Sciences
VL - 45
IS - 3
SP - 423
EP - 446
AB - We introduce a new second-order central-upwind scheme for the Saint-Venant system of shallow water equations on triangular grids. We prove that the scheme both preserves “lake at rest” steady states and guarantees the positivity of the computed fluid depth. Moreover, it can be applied to models with discontinuous bottom topography and irregular channel widths. We demonstrate these features of the new scheme, as well as its high resolution and robustness in a number of numerical examples.
LA - eng
KW - hyperbolic systems of conservation and balance laws; semi-discrete central-upwind schemes; Saint-Venant system of shallow water equations
UR - http://eudml.org/doc/273245
ER -

References

top
  1. [1] R. Abgrall, On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. J. Comput. Phys.114 (1994) 45–58. Zbl0822.65062MR1286187
  2. [2] N. Andrianov, Testing numerical schemes for the shallow water equations. Preprint available at http://www-ian.math.uni-magdeburg.de/home/andriano/CONSTRUCT/testing.ps.gz (2004). 
  3. [3] P. Arminjon, M.-C. Viallon and A. Madrane, A finite volume extension of the Lax-Friedrichs and Nessyahu-Tadmor schemes for conservation laws on unstructured grids. Int. J. Comput. Fluid Dyn.9 (1997) 1–22. Zbl0913.76063MR1609613
  4. [4] E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput.25 (2004) 2050–2065. Zbl1133.65308MR2086830
  5. [5] F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. Frontiers in Math Series, Birkhäuser Verlag, Basel (2004). Zbl1086.65091MR2128209
  6. [6] S. Bryson and D. Levy, Balanced central schemes for the shallow water equations on unstructured grids. SIAM J. Sci. Comput.27 (2005) 532–552. Zbl1089.76036MR2202233
  7. [7] I. Christov and B. Popov, New nonoscillatory central schemes on unstructured triangulations for hyperbolic systems of conservation laws. J. Comput. Phys.227 (2008) 5736–5757. Zbl1151.65068MR2414928
  8. [8] A.J.C. de Saint-Venant, Théorie du mouvement non-permanent des eaux, avec application aux crues des rivière et à l'introduction des marées dans leur lit. C. R. Acad. Sci. Paris 73 (1871) 147–154. Zbl03.0482.04JFM03.0482.04
  9. [9] L.J. Durlofsky, B. Engquist and S. Osher, Triangle based adaptive stencils for the solution of hyperbolic conservation laws. J. Comput. Phys.98 (1992) 64–73. Zbl0747.65072
  10. [10] T. Gallouët, J.-M. Hérard and N. Seguin, Some approximate Godunov schemes to compute shallow-water equations with topography. Comput. Fluids32 (2003) 479–513. Zbl1084.76540MR1966639
  11. [11] J.-F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation. Discrete Contin. Dyn. Syst. Ser. B1 (2001) 89–102. Zbl0997.76023MR1821555
  12. [12] S. Gottlieb, C.-W. Shu and E. Tadmor, High order time discretization methods with the strong stability property. SIAM Rev.43 (2001) 89–112. Zbl0967.65098MR1854647
  13. [13] M.E. Hubbard, Multidimensional slope limiters for MUSCL-type finite volume schemes on unstructured grids. J. Comput. Phys.155 (1999) 54–74. Zbl0934.65109MR1716501
  14. [14] M.E. Hubbard, On the accuracy of one-dimensional models of steady converging/diverging open channel flows. Int. J. Numer. Methods Fluids35 (2001) 785–808. Zbl1014.76051
  15. [15] S. Jin, A steady-state capturing method for hyperbolic system with geometrical source terms. ESAIM: M2AN 35 (2001) 631–645. Zbl1001.35083MR1862872
  16. [16] S. Jin and X. Wen, Two interface-type numerical methods for computing hyperbolic systems with geometrical source terms having concentrations. SIAM J. Sci. Comput.26 (2005) 2079–2101. Zbl1083.35062MR2196590
  17. [17] D. Kröner, Numerical Schemes for Conservation Laws. Wiley, Chichester (1997). Zbl0872.76001
  18. [18] A. Kurganov and D. Levy, Central-upwind schemes for the Saint-Venant system. ESAIM: M2AN 36 (2002) 397–425. Zbl1137.65398MR1918938
  19. [19] A. Kurganov and C.-T. Lin, On the reduction of numerical dissipation in central-upwind schemes. Commun. Comput. Phys.2 (2007) 141–163. Zbl1164.65455MR2305919
  20. [20] A. Kurganov and G. Petrova, Central-upwind schemes on triangular grids for hyperbolic systems of conservation laws. Numer. Methods Partial Diff. Equ.21 (2005) 536–552. Zbl1071.65122MR2128595
  21. [21] A. Kurganov and G. Petrova, A second-order well-balanced positivity preserving scheme for the Saint-Venant system. Commun. Math. Sci.5 (2007) 133–160. Zbl1226.76008MR2310637
  22. [22] A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys.160 (2000) 214–282. Zbl0987.65085MR1756766
  23. [23] A. Kurganov and E. Tadmor, Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers. Numer. Methods Partial Diff. Equ.18 (2002) 584–608. Zbl1058.76046MR1919599
  24. [24] A. Kurganov, S. Noelle and G. Petrova, Semi-discrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput.23 (2001) 707–740. Zbl0998.65091MR1860961
  25. [25] R.J. LeVeque, Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys.146 (1998) 346–365. Zbl0931.76059MR1650496
  26. [26] R. LeVeque, Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathematics, Cambridge University Press (2002). Zbl1010.65040MR1925043
  27. [27] K.-A. Lie and S. Noelle, On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws. SIAM J. Sci. Comput.24 (2003) 1157–1174. Zbl1038.65078MR1976211
  28. [28] H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys.87 (1990) 408–463. Zbl0697.65068MR1047564
  29. [29] S. Noelle, N. Pankratz, G. Puppo and J. Natvig, Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. J. Comput. Phys.213 (2006) 474–499. Zbl1088.76037MR2207248
  30. [30] B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term. Calcolo38 (2001) 201–231. Zbl1008.65066MR1890353
  31. [31] G. Russo, Central schemes for balance laws, in Hyperbolic problems: theory, numerics, applications II, Internat. Ser. Numer. Math. 141, Birkhäuser, Basel (2001) 821–829. MR1871169
  32. [32] G. Russo, Central schemes for conservation laws with application to shallow water equations, in Trends and applications of mathematics to mechanics: STAMM 2002, S. Rionero and G. Romano Eds., Springer-Verlag Italia SRL (2005) 225–246. MR1910803
  33. [33] P.K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal.21 (1984) 995–1011. Zbl0565.65048MR760628
  34. [34] B. van Leer, Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov's method. J. Comput. Phys. 32 (1979) 101–136. Zbl0939.76063MR1703646
  35. [35] M. Wierse, A new theoretically motivated higher order upwind scheme on unstructured grids of simplices. Adv. Comput. Math.7 (1997) 303–335. Zbl0889.65103MR1449684
  36. [36] Y. Xing and C.-W. Shu, High order finite difference WENO schemes with the exact conservation property for the shallow water equations. J. Comput. Phys.208 (2005) 206–227. Zbl1114.76340MR2144699
  37. [37] Y. Xing and C.-W. Shu, A new approach of high order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. Commun. Comput. Phys.1 (2006) 100–134. Zbl1115.65096MR2216604

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.