Robust operator estimates and the application to substructuring methods for first-order systems
Christian Wieners; Barbara Wohlmuth
- Volume: 48, Issue: 5, page 1473-1494
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topWieners, Christian, and Wohlmuth, Barbara. "Robust operator estimates and the application to substructuring methods for first-order systems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 48.5 (2014): 1473-1494. <http://eudml.org/doc/273259>.
@article{Wieners2014,
abstract = {We discuss a family of discontinuous Petrov–Galerkin (DPG) schemes for quite general partial differential operators. The starting point of our analysis is the DPG method introduced by [Demkowicz et al., SIAM J. Numer. Anal. 49 (2011) 1788–1809; Zitelli et al., J. Comput. Phys. 230 (2011) 2406–2432]. This discretization results in a sparse positive definite linear algebraic system which can be obtained from a saddle point problem by an element-wise Schur complement reduction applied to the test space. Here, we show that the abstract framework of saddle point problems and domain decomposition techniques provide stability and a priori estimates. To obtain efficient numerical algorithms, we use a second Schur complement reduction applied to the trial space. This restricts the degrees of freedom to the skeleton. We construct a preconditioner for the skeleton problem, and the efficiency of the discretization and the solution method is demonstrated by numerical examples.},
author = {Wieners, Christian, Wohlmuth, Barbara},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {first-order systems; Petrov–Galerkin methods; saddle point problems; substructuring methods; discontinuous Petrov-Galerkin method; preconditioning},
language = {eng},
number = {5},
pages = {1473-1494},
publisher = {EDP-Sciences},
title = {Robust operator estimates and the application to substructuring methods for first-order systems},
url = {http://eudml.org/doc/273259},
volume = {48},
year = {2014},
}
TY - JOUR
AU - Wieners, Christian
AU - Wohlmuth, Barbara
TI - Robust operator estimates and the application to substructuring methods for first-order systems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2014
PB - EDP-Sciences
VL - 48
IS - 5
SP - 1473
EP - 1494
AB - We discuss a family of discontinuous Petrov–Galerkin (DPG) schemes for quite general partial differential operators. The starting point of our analysis is the DPG method introduced by [Demkowicz et al., SIAM J. Numer. Anal. 49 (2011) 1788–1809; Zitelli et al., J. Comput. Phys. 230 (2011) 2406–2432]. This discretization results in a sparse positive definite linear algebraic system which can be obtained from a saddle point problem by an element-wise Schur complement reduction applied to the test space. Here, we show that the abstract framework of saddle point problems and domain decomposition techniques provide stability and a priori estimates. To obtain efficient numerical algorithms, we use a second Schur complement reduction applied to the trial space. This restricts the degrees of freedom to the skeleton. We construct a preconditioner for the skeleton problem, and the efficiency of the discretization and the solution method is demonstrated by numerical examples.
LA - eng
KW - first-order systems; Petrov–Galerkin methods; saddle point problems; substructuring methods; discontinuous Petrov-Galerkin method; preconditioning
UR - http://eudml.org/doc/273259
ER -
References
top- [1] J.H. Adler, J. Brannick, C. Liu, T. Manteuffel and L. Zikatanov, First-order system least squares and the energetic variational approach for two-phase flow. J. Comput. Phys.230 (2011) 6647–6663. Zbl05992173MR2818617
- [2] J.H. Adler, T.A. Manteuffel, S.F. McCormick, J.W. Nolting, J.W. Ruge and L. Tang, Efficiency based adaptive local refinement for first-order system least-squares formulations. SIAM J. Sci. Comput.33 (2011) 1–24. Zbl05964955MR2765484
- [3] A. Barker, S. Brenner, E.-H. Park and L-Y. Sung, A one-level additive schwarz preconditioner for a discontinuous petrov-galerkin method. Preprint arXiv:1212.2645 (2012). To appear in the Proceeding of DD21.
- [4] P.B. Bochev and M.D. Gunzburger, Finite element methods of least-squares type. SIAM Rev.40 (1998) 789–837. Zbl0914.65108MR1659689
- [5] P.B. Bochev and M.D. Gunzburger, Least-Squares Finite Element Methods, vol. 166 of Appl. Math. Sci. Springer, New York (2009). Zbl1168.65067MR2490235
- [6] D. Braess, Finite Elements. Theory, fast solvers, and applications in solid mechaics. 3th ed. Cambridge University Press (2007). Zbl1118.65117
- [7] J.H. Bramble, R.D. Lazarov and J.E. Pasciak, A least-squares approach based on a discrete minus one inner product for first order systems. Math. Comput.66 (1997) 935–955. Zbl0870.65104MR1415797
- [8] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer (1991). Zbl0788.73002MR1115205
- [9] T. Bui-Thanh, L. Demkowicz and O. Ghattas, A Unified Discontinuous Petrov−Galerkin Method and its Analysis for Friedrichs’ Systems. SIAM J. Numer. Anal. 51 (2013) 1933–1956. Zbl1278.65173MR3072762
- [10] A. Buffa and P. Monk, Error estimates for the ultra weak variational formulation of the Helmholtz equation. Math. Model. Numer. Anal.42 (2008) 925–940. Zbl1155.65094MR2473314
- [11] Z. Cai, R. Lazarov, T.A. Manteuffel and S.F. McCormick, First-Order System Least Squares for Second-Order Partial Differential Equations: Part I. SIAM J. Numer. Anal.31 (1994) 1785–1799. Zbl0813.65119MR1302685
- [12] J. Chan, L. Demkowicz and N. Heuer, Robust DPG method for convection-dominated diffusion problems II: Natural inflow condition. Comput. Math. Appl.67 (2014) 771–795. Zbl1290.65088MR3163878
- [13] W. Dahmen, C. Huang, C. Schwab and G. Welper, Adaptive Petrov-Galerkin methods for first order transport equations. SIAM J. Numer. Anal.50 (2012) 2420–2445. Zbl1260.65091MR3022225
- [14] W. Dahmen, C. Plesken and G. Welper, Double greedy algorithms: reduced basis methods for transport dominated problems (2013). Preprint arXiv:1302.5072. Zbl1291.65339MR3177860
- [15] L. Demkowicz and J. Gopalakrishnan, Analysis of the DPG method for the Poisson equation. SIAM J. Numer. Anal.49 (2011) 1788–1809. Zbl1237.65122MR2837484
- [16] L. Demkowicz, J. Gopalakrishnan, I. Muga and J. Zitelli, Wavenumber explicit analysis for a DPG method for the multidimensional Helmholtz equation. Comput. Methods Appl. Mech. Engrg.213 (2012) 126–138. Zbl1243.76059MR2880509
- [17] L. Demkowicz, J. Gopalakrishnan and A.H. Niemi, A class of discontinuous Petrov–Galerkin methods. Part III: Adaptivity. Appl. Numer. Math. 62 (2012) 396–427. Zbl1316.76047MR2899253
- [18] L. Demkowicz and N. Heuer, Robust DPG method for convection-dominated diffusion problems. SIAM J. Numer. Anal.51 (2013) 2514–2537. Zbl1290.65088MR3095479
- [19] S. Esterhazy and J.M. Melenk, On stability of discretizations of the Helmholtz equation, in Numerical Analysis of Multiscale Problems, vol. 83 of Lect. Notes Comput. Sci. Engrg. Springer, Berlin (2012) 285–324. Zbl1248.65115MR3050917
- [20] J. Gopalakrishnan and W. Qiu, An analysis of the practical DPG method. Math. Comput. (2013). Zbl1282.65154MR3143683
- [21] I. Herrera, Trefftz method: A general theory. Numer. Methods Partial Differ. Eqs.16 (2000) 561–580. Zbl0978.65114MR1786184
- [22] J.J. Heys, E. Lee, T.A. Manteuffel, S.F. Mccormick and J.W. Ruge, Enhanced mass conservation in least-squares methods for Navier-Stokes equations. SIAM J. Sci. Comput.31 (2009) 2303–2321. Zbl1188.76195MR2516154
- [23] R. Hiptmair, A. Moiola and I. Perugia, Stability results for the time-harmonic Maxwell equations with impedance boundary conditions. Math. Models Methods Appl. Sci.21 (2011) 2263–2287. Zbl1331.35335MR2860676
- [24] R. Hiptmair and J. Xu, Nodal auxiliary space preconditioning in H(curl) and H(div) spaces. SIAM J. Numer. Anal.45 (2007) 2483–2509. Zbl1153.78006MR2361899
- [25] B.N. Khoromskij and G. Wittum, Numerical solution of elliptic differential equations by reduction to the interface. Berlin, Springer (2004). Zbl1043.65128MR2045003
- [26] W. Krendl, V. Simoncini and W. Zulehner, Stability Estimates and Structural Spectral Properties of Saddle Point Problems. Numer. Math.124 (2013) 183–213. Zbl1269.65032MR3041734
- [27] U. Langer, G. Of, O. Steinbach and W. Zulehner, Inexact data-sparse boundary element tearing and interconnecting methods. SIAM J. Sci. Comput.29 (2007) 290–314. Zbl1133.65105MR2285892
- [28] J.M. Melenk, On generalized finite element methods. Ph.D. thesis, University of Maryland (1995). MR2692949
- [29] A. Moiola, Trefftz-Discontinuous Galerkin Methods for Time-Harmonic Wave Problems. Ph.D. thesis, ETH Zürich (2011).
- [30] N. Roberts, T. Bui-Thanh and L. Demkowicz. The DPG method for the Stokes problem ICES Report (2012) 12–22.
- [31] D.B. Szyld, The many proofs of an identity on the norm of oblique projections. Numer. Algorithms42 (2006) 309–323. Zbl1102.47002MR2279449
- [32] C. Wieners, A geometric data structure for parallel finite elements and the application to multigrid methods with block smoothing. Comput. Visual. Sci.13 (2010) 161–175. Zbl1216.65164MR2645017
- [33] J. Xu and L. Zikatanov, Some observations on Babuška and Brezzi theories. Numer. Math.94 (2003) 195–202. Zbl1028.65115MR1971217
- [34] J. Zitelli, I. Muga, L. Demkowicz, J. Gopalakrishnan, D. Pardo and V. Calo, A class of discontinuous Petrov−Galerkin methods. Part IV: Wave propagation. J. Comput. Phys. 230 (2011) 2406–2432. Zbl1316.76054MR2772923
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.