Existences and boundary behavior of boundary blow-up solutions to quasilinear elliptic systems with singular weights.
We discuss a family of discontinuous Petrov–Galerkin (DPG) schemes for quite general partial differential operators. The starting point of our analysis is the DPG method introduced by [Demkowicz et al., SIAM J. Numer. Anal. 49 (2011) 1788–1809; Zitelli et al., J. Comput. Phys. 230 (2011) 2406–2432]. This discretization results in a sparse positive definite linear algebraic system which can be obtained from a saddle point problem by an element-wise Schur complement reduction applied to the test space....