First variation of the general curvature-dependent surface energy
Günay Doğan; Ricardo H. Nochetto
- Volume: 46, Issue: 1, page 59-79
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] F. Almgren and J.E. Taylor, Optimal geometry in equilibrium and growth. Fractals 3 (1995) 713–723. Symposium in Honor of B. Mandelbrot. Zbl0885.58015MR1410290
- [2] F. Almgren, J.E. Taylor and L. Wang, Curvature-driven flows: a variational approach. SIAM J. Control Optim.31 (1993) 387–438. Zbl0783.35002MR1205983
- [3] L. Ambrosio, Minimizing movements. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl.19 (1995) 191–246. Zbl0957.49029MR1387558
- [4] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel (2005). Zbl1145.35001MR2129498
- [5] J.W. Barrett, H. Garcke and R. Nürnberg, Parametric approximation of Willmore flow and related geometric evolution equations. SIAM J. Sci. Comput.31 (2008) 225–253. Zbl1186.65133MR2460777
- [6] M. Bauer and E. Kuwert, Existence of minimizing Willmore surfaces of prescribed genus. Int. Math. Res. Not.10 (2003) 553–576. Zbl1029.53073MR1941840
- [7] T. Baumgart, S.T. Hess and W.W. Webb, Image coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature425 (2003) 821–824.
- [8] G. Bellettini and M. Paolini, Anisotropic motion by mean curvature in the context of Finsler geometry. Hokkaido Math. J.25 (1996) 537–566. Zbl0873.53011MR1416006
- [9] A. Bonito, R.H. Nochetto and M.S. Pauletti, Parametric FEM for geometric biomembranes. J. Comput. Phys.229 (2010) 3171–3188. Zbl1307.76049MR2601095
- [10] J.W. Cahn and D.W. Hoffman, A vector thermodynamics for anisotropic surfaces. II. Curved and facetted surfaces. Acta Metall. 22 (1974) 1205–1214.
- [11] T. Chan and L. Vese, A level set algorithm for minimizing the Mumford-Shah functional in image processing, in Proceedings of the 1st IEEE Workshop on Variational and Level Set Methods in Computer Vision (2001) 161–168.
- [12] K. Chen, C. Jayaprakash, R. Pandit and W. Wenzel, Microemulsions: A Landau-Ginzburg theory. Phys. Rev. Lett.65 (1990) 2736–2739.
- [13] P. Cicuta, S.L. Keller and S.L. Veatch, Diffusion of liquid domains in lipid bilayer membranes. J. Phys. Chem. B111 (2007) 3328–3331.
- [14] U. Clarenz, U. Diewald, G. Dziuk, M. Rumpf and R. Rusu, A finite element method for surface restoration with smooth boundary conditions. Comput. Aided Geom. Des.21 (2004) 427–445. Zbl1069.65546MR2058390
- [15] M.C. Delfour and J.-P. Zolésio, Shapes and Geometries, Advances in Design and Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2001). Zbl1251.49001MR1855817
- [16] H.G. Döbereiner, O. Selchow and R. Lipowsky, Spontaneous curvature of fluid vesicles induced by trans-bilayer sugar asymmetry. Eur. Biophys. J.28 (1999) 174–178.
- [17] G. Doğan, P. Morin and R.H. Nochetto, A variational shape optimization approach for image segmentation with a Mumford-Shah functional. SIAM J. Sci. Comput.30 (2008) 3028–3049. Zbl1195.49036MR2452377
- [18] G. Doğan, P. Morin, R.H. Nochetto and M. Verani, Discrete gradient flows for shape optimization and applications. Comput. Meth. Appl. Mech. Eng.196 (2007) 3898–3914. Zbl1173.49307MR2340012
- [19] M. Droske and M. Bertozzi, Higher-order feature-preserving geometric regularization. SIAM J. Imaging Sci.3 (2010) 21–51. Zbl1185.65066MR2609457
- [20] G. Dziuk, Computational parametric Willmore flow. Numer. Math.111 (2008) 55–80. Zbl1158.65073MR2448203
- [21] G. Dziuk, E. Kuwert and R. Schätzle, Evolution of elastic curves in : existence and computation. SIAM J. Math. Anal. 33 (electronic) (2002) 1228–1245. Zbl1031.53092MR1897710
- [22] C.M. Elliott and B. Stinner, Modeling and computation of two phase geometric biomembranes using surface finite elements. J. Comput. Phys.229 (2010) 6585–6612. Zbl05784817MR2660322
- [23] W. Helfrich, Elastic properties of lipid bilayers – theory and possible experiments. Zeitschrift Fur Naturforschung C-A J. Biosc. 28 (1973) 693.
- [24] M. Hintermüller and W. Ring, A second order shape optimization approach for image segmentation. SIAM J. Appl. Math. 64 (2003/04) 442–467. Zbl1073.68095MR2049659
- [25] M. Hintermüller and W. Ring, An inexact Newton-CG-type active contour approach for the minimization of the Mumford-Shah functional. J. Math. Imaging and Vision 20 (2004) 19–42. Special issue on mathematics and image analysis. MR2049779
- [26] J.T. Jenkins, The equations of mechanical equilibrium of a model membrane. SIAM J. Appl. Math.32 (1977) 755–764. Zbl0358.73074MR441076
- [27] R. Keriven and O. Faugeras, Variational principles, surface evolution, PDEs, level set methods and the stereo problem. Technical Report 3021, INRIA (1996). Zbl0973.94004
- [28] R. Keriven and O. Faugeras, Variational principles, surface evolution, PDEs, level set methods and the stereo problem. IEEE Trans. Image Process. 7 (1998) 336–344. Zbl0973.94004MR1669532
- [29] R. Kimmel and A.M. Bruckstein, Regularized Laplacian zero crossings as optimal edge integrators. IJCV53 (2003) 225–243.
- [30] E. Kuwert and R. Schätzle, The Willmore flow with small initial energy. J. Differential Geom.57 (2001) 409–441. Zbl1035.53092MR1882663
- [31] E. Kuwert and R. Schätzle, Gradient flow for the Willmore functional. Comm. Anal. Geom.10 (2002) 307–339. Zbl1029.53082MR1900754
- [32] E. Kuwert and R. Schätzle, Removability of point singularities of Willmore surfaces. Ann. Math.160 (2004) 315–357. Zbl1078.53007MR2119722
- [33] M. Laradji and O.G. Mouritsen, Elastic properties of surfactant monolayers at liquid-liquid interfaces: A molecular dynamics study. J. Chem. Phys.112 (2000) 8621–8630.
- [34] M. Leventon, O. Faugeraus and W. Grimson, Level set based segmentation with intensity and curvature priors, in Proceedings of Workshop on Mathematical Methods in Biomedical Image Analysis Proceedings (2000) 4–11.
- [35] G.B. McFadden, A.A. Wheeler, R.J. Braun, S.R. Coriell and R.F. Sekerka, Phase-field models for anisotropic interfaces. Phys. Rev. E48 (1993) 2016–2024. MR1377920
- [36] J. Melenkevitz and S.H. Javadpour, Phase separation dynamics in mixtures containing surfactants. J. Chem. Phys.107 (1997) 623–629.
- [37] R. Rusu, An algorithm for the elastic flow of surfaces. Interfaces and Free Boundaries7 (2005) 229–239. Zbl1210.35149MR2171130
- [38] U. Seifert, Configurations of fluid membranes and vesicles. Adv. Phys.46 (1997) 13–137.
- [39] L. Simon, Existence of surfaces minimizing the Willmore functional. Comm. Anal. Geom.1 (1993) 281–326. Zbl0848.58012MR1243525
- [40] G. Simonett, The Willmore flow near spheres. Differential Integral Equations14 (2001) 1005–1014. Zbl1161.35429MR1827100
- [41] J. Sokołowski and J.-P. Zolésio, Introduction to Shape Optimization, Springer Series in Computational Mathematics 16. Springer-Verlag, Berlin (1992). Zbl0761.73003
- [42] G. Sundaramoorthi, A. Yezzi, A. Mennucci and G. Sapiro, New possibilities with Sobolev active contours, in Proceedings of the 1st International Conference on Scale Space Methods and Variational Methods in Computer Vision (2007). Zbl1159.68606
- [43] J.E. Taylor, Crystalline variational problems. Bull. Amer. Math. Soc.84 (1978) 568–588. Zbl0392.49022MR493671
- [44] J.E. Taylor, Mean curvature and weighted mean curvature. Acta Metall. Mater.40 (1992) 1475–1485.
- [45] J.E. Taylor and J.W. Cahn, Linking anisotropic sharp and diffuse surface motion laws via gradient flows. J. Stat. Phys.77 (1994) 183–197. Zbl0844.35044MR1300532
- [46] J.E. Taylor and J.W. Cahn, Diffuse interfaces with sharp corners and facets: Phase field modeling of strongly anisotropic surfaces. Physica D112 (1998) 381–411. Zbl0930.35201MR1607466
- [47] S.L. Veatch and S.L. Keller, Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys. J.85 (2003) 3074–3083.
- [48] A.A. Wheeler and G.B. McFadden, A ξ-vector formulation of anisotropic phase-field models: 3D asymptotics. Eur. J. Appl. Math.7 (1996) 367–381. Zbl0909.35160MR1413370
- [49] T.J. Willmore, Total curvature in Riemannian geometry. Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester (1982). Zbl0501.53038MR686105