Macroscopic contact angle and liquid drops on rough solid surfaces via homogenization and numerical simulations
S. Cacace; A. Chambolle; A. DeSimone; L. Fedeli
- Volume: 47, Issue: 3, page 837-858
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] G. Alberti and A. DeSimone, Wetting of rough surfaces: a homogenization approach. Proc. R. Soc. A461 (2005) 79–97. Zbl1145.82321MR2124194
- [2] G. Alberti and A. DeSimone, Quasistatic evolution of sessile drops and contact angle hysteresis. Arch. Rat. Mech. Anal.202 (2011) 295–348. Zbl1276.76016MR2835870
- [3] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York (2000) Zbl0957.49001MR1857292
- [4] L.A. Caffarelli, The obstacle problem revisited. J. Fourier Anal. Appl.4 (1998) 383–402. Zbl0928.49030MR1658612
- [5] L.A. Caffarelli and A. Mellet, Capillary drops on an inhomogeneous surface, Perspectives in nonlinear partial differential equations. Contemp. Math. 446 (2007) 175–201. Zbl1200.76053MR2373730
- [6] A. DeSimone, N. Grunewald and F. Otto, A new model for contact angle hysteresis. Netw. Heterog. Media2 (2007) 211–225. Zbl1125.76011MR2291819
- [7] J. Eckstein and D.P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55 (1992) Zbl0765.90073MR1168183
- [8] E. Esser, Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split Bregman (2009)
- [9] L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. CRC Press, Boca Raton, FL (1992). Zbl0804.28001MR1158660
- [10] L. Fedeli, A. Turco and A. DeSimone, Metastable equilibria of capillary drops on solid surfaces: a phase field approach. Contin. Mech. Thermodyn.23 (2011) 453–471. Zbl1272.76065MR2825824
- [11] H. Federer, Geometric measure theory. Springer-Verlag New York Inc., New York (1969). Zbl0874.49001MR257325
- [12] R. Finn, Some properties of capillary surfaces. Milan J. Math.70 (2002) 1–23. Zbl1053.76009MR1936746
- [13] M.J. Lai, B. Lucier and J. Wang, The convergence of a central-difference discretization of Rudin-Osher-Fatemi model for image denoising, Scale Space and Variational Methods in Computer Vision. Springer (2009) 514–526.
- [14] P.L. Lions and B. Mercier, Splitting Algorithms for the Sum of Two Nonlinear Operators. SIAM J. Numer. Anal.16 (1979) 964–979. Zbl0426.65050MR551319
- [15] D. Quéré, Wetting and Roughness. Annu. Rev. Mater. Res.38 (2008) 71–99.
- [16] J.E. Taylor, Boundary regularity for solutions to various capillarity and free boundary problems. Commun. Partial Differ. Equ.2 (1977) 323–357. Zbl0357.35010MR487721
- [17] H. Yang, A. Buguin, J.M. Taulemesse, K. Kaneko, S. Mery, A. Bergeret and P. Keller, Micron-Sized Main-Chain Liquid Crystalline Elastomer Actuators with Ultralarge Amplitude Contractions. J. Amer. Chem. Soc.131 (2009) 15000–15004.
- [18] J. Wang and B.J. Lucier, Error Bounds for Finite-Difference Methods for Rudin-Osher-Fatemi Image Smoothing. SIAM J. Numer. Anal.49 (2011) 845–868. Zbl05947524MR2792398