A positivity preserving central scheme for shallow water flows in channels with wet-dry states
Jorge Balbás; Gerardo Hernandez-Duenas
- Volume: 48, Issue: 3, page 665-696
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] R. Abgrall and S. Karni, Two-layer shallow water system: a relaxation approach. SIAM J. Sci. Comput.31 (2009) 1603–1627. Zbl1188.76229MR2491538
- [2] L. Armi, The hydraulics of two flowing layers with different densities. J. Fluid Mech.163 (1986) 27–58. MR834706
- [3] L. Armi and D.M. Farmer, Maximal two-layer exchange through a contraction with barotropic net flow. J. Fluid Mech.186 (1986) 27–51. Zbl0587.76168MR834706
- [4] E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput.25 (2004) 2050–2065. Zbl1133.65308MR2086830
- [5] J. Balbás and S. Karni, A central scheme for shallow water flows along channels with irregular geometry. ESAIM: M2AN 43 (2009) 333–351. Zbl1159.76026MR2512499
- [6] A. Bollermann, G. Chen, A. Kurganov and S. Noelle, A well-balanced reconstruction of wet/dry fronts for the shallow water equations. J. Sci. Comput. (2011) 1–24. Zbl06206925
- [7] A. Bollermann, S. Noelle and M. Lukáčová-Medvidóvá, Finite volume evolution Galerkin methods for the shallow water equations with dry beds. Commun. Comput. Phys.10 (2011) 371–404. Zbl1123.76041MR2799646
- [8] F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2004). Zbl1086.65091MR2128209
- [9] M. Castro, J. Macías and C. Parés, A Q-scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system. ESAIM: M2AN 35 (2001) 107–127. Zbl1094.76046MR1811983
- [10] M.J. Castro, J.A. García-Rodríguez, J.M. González-Vida, J. Macías, C. Parés and M.E. Vázquez-Cendón, Numerical simulation of two-layer shallow water flows through channels with irregular geometry. J. Comput. Phys.195 (2004) 202–235. Zbl1087.76077MR2043135
- [11] M.J. Castro, A. Pardo Milanés and C. Parés, Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique. Math. Models Methods Appl. Sci.17 (2007) 2055–2113. Zbl1137.76038MR2371563
- [12] N. Črnjarić-Žic, S. Vuković and L. Sopta, Balanced finite volume WENO and central WENO schemes for the shallow water and the open-channel flow equations. J. Comput. Phys.200 (2004) 512–548. Zbl1115.76364MR2095276
- [13] D.M. Farmer and L. Armi, Maximal two-layer exchange over a sill and through the combination of a sill and contraction with barotropic flow. J. Fluid Mech.164 (1986) 53–76. Zbl0587.76169
- [14] P. Garcia-Navarro and M.E. Vazquez-Cendon, On numerical treatment of the source terms in the shallow water equations. Comput. Fluids29 (2000) 951–979. Zbl0986.76051
- [15] D.L. George, Augmented Riemann solvers for the shallow water equations over variable topography with steady states and inundation. J. Comput. Phys.227 (2008) 3089–3113. Zbl1329.76204MR2392725
- [16] S. Gottlieb, C.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods. SIAM Review43 (2001) 89–112. Zbl0967.65098MR1854647
- [17] G. Hernández-Dueñas and S. Karni, Shallow water flows in channels. J. Sci. Comput.48 (2011) 190–208. Zbl05936143
- [18] S. Jin, A steady-state capturing method for hyperbolic systems with geometrical source terms. ESAIM: M2AN (2001) 35 631–645. Zbl1001.35083MR1862872
- [19] S. Karni and G. Hernández-Dueñas, A scheme for the shallow water flow with area variation. AIP Conference Proceedings. Vol. 1168 of International Conference Numer. Anal. Appl. Math., Rethymno, Crete, Greece. American Institute of Physics (2009) 1433–1436.
- [20] A. Kurganov and D. Levy, Central-upwind schemes for the Saint-Venant system. ESAIM: M2AN 36 (2002) 397–425. Zbl1137.65398MR1918938
- [21] A. Kurganov and G. Petrova, A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Commun. Math. Sci.5 (2007) 133–160. Zbl1226.76008MR2310637
- [22] A. Kurganov and G. Petrova, Central-upwind schemes for two-layer shallow water equations. SIAM J. Sci. Comput.31 (2009) 1742–1773. Zbl1188.76230MR2491544
- [23] A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys.160 (2000) 241–282. Zbl0987.65085MR1756766
- [24] R.J. LeVeque, Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys.146 (1998) 346–365. Zbl0931.76059MR1650496
- [25] S. Noelle, N. Pankratz, G. Puppo and J.R. Natvig, Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. J. Comput. Phys.213 (2006) 474–499. Zbl1088.76037MR2207248
- [26] S. Noelle, Y. Xing and C.-W. Shu, High-order well-balanced finite volume WENO schemes for shallow water equation with moving water. J. Comput. Phys.226 (2007) 29–58. Zbl1120.76046MR2356351
- [27] B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term. Calcolo38 (2001) 201–231. Zbl1008.65066MR1890353
- [28] P.L. Roe, Upwind differencing schemes for hyperbolic conservation laws with source terms. Nonlinear hyperbolic problems (St. Etienne, 1986). In vol. 1270 of Lecture Notes in Math. Springer, Berlin (1987) 41–51. Zbl0626.65086
- [29] G. Russo, Central schemes for balance laws. Hyperbolic problems: theory, numerics, applications, Vol. I, II (Magdeburg, 2000). In vol. 140 of Internat. Ser. Numer. Math. Birkhäuser, Basel (2001) 821–829.
- [30] B. van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32 (1979) 101–136; J. Comput. Phys. 135 (1997) 227–248. Zbl0939.76063
- [31] M. E. Vázquez-Cendón. Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry. J. Comput. Phys.148 (1999) 497–526. Zbl0931.76055
- [32] S. Vuković and L. Sopta, High-order ENO and WENO schemes with flux gradient and source term balancing. In Applied mathematics and scientific computing (Dubrovnik, 2001). Kluwer/Plenum, New York (2003) 333–346. Zbl1017.65071
- [33] Yulong Xing, Chi-Wang Shu and Sebastian Noelle, On the advantage of well-balanced schemes for moving-water equilibria of the shallow water equations. J. Sci. Comput.48 (2011) 339–349. Zbl05936153