Multiscale Finite Element approach for “weakly” random problems and related issues

Claude Le Bris; Frédéric Legoll; Florian Thomines

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2014)

  • Volume: 48, Issue: 3, page 815-858
  • ISSN: 0764-583X

Abstract

top
We address multiscale elliptic problems with random coefficients that are a perturbation of multiscale deterministic problems. Our approach consists in taking benefit of the perturbative context to suitably modify the classical Finite Element basis into a deterministic multiscale Finite Element basis. The latter essentially shares the same approximation properties as a multiscale Finite Element basis directly generated on the random problem. The specific reference method that we use is the Multiscale Finite Element Method. Using numerical experiments, we demonstrate the efficiency of our approach and the computational speed-up with respect to a more standard approach. In the stationary setting, we provide a complete analysis of the approach, extending that available for the deterministic periodic setting.

How to cite

top

Le Bris, Claude, Legoll, Frédéric, and Thomines, Florian. "Multiscale Finite Element approach for “weakly” random problems and related issues." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 48.3 (2014): 815-858. <http://eudml.org/doc/273339>.

@article{LeBris2014,
abstract = {We address multiscale elliptic problems with random coefficients that are a perturbation of multiscale deterministic problems. Our approach consists in taking benefit of the perturbative context to suitably modify the classical Finite Element basis into a deterministic multiscale Finite Element basis. The latter essentially shares the same approximation properties as a multiscale Finite Element basis directly generated on the random problem. The specific reference method that we use is the Multiscale Finite Element Method. Using numerical experiments, we demonstrate the efficiency of our approach and the computational speed-up with respect to a more standard approach. In the stationary setting, we provide a complete analysis of the approach, extending that available for the deterministic periodic setting.},
author = {Le Bris, Claude, Legoll, Frédéric, Thomines, Florian},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {weakly stochastic homogenization; finite elements; Galerkin methods; highly oscillatory PDE; numerical experiment},
language = {eng},
number = {3},
pages = {815-858},
publisher = {EDP-Sciences},
title = {Multiscale Finite Element approach for “weakly” random problems and related issues},
url = {http://eudml.org/doc/273339},
volume = {48},
year = {2014},
}

TY - JOUR
AU - Le Bris, Claude
AU - Legoll, Frédéric
AU - Thomines, Florian
TI - Multiscale Finite Element approach for “weakly” random problems and related issues
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2014
PB - EDP-Sciences
VL - 48
IS - 3
SP - 815
EP - 858
AB - We address multiscale elliptic problems with random coefficients that are a perturbation of multiscale deterministic problems. Our approach consists in taking benefit of the perturbative context to suitably modify the classical Finite Element basis into a deterministic multiscale Finite Element basis. The latter essentially shares the same approximation properties as a multiscale Finite Element basis directly generated on the random problem. The specific reference method that we use is the Multiscale Finite Element Method. Using numerical experiments, we demonstrate the efficiency of our approach and the computational speed-up with respect to a more standard approach. In the stationary setting, we provide a complete analysis of the approach, extending that available for the deterministic periodic setting.
LA - eng
KW - weakly stochastic homogenization; finite elements; Galerkin methods; highly oscillatory PDE; numerical experiment
UR - http://eudml.org/doc/273339
ER -

References

top
  1. [1] J. Aarnes and Y.R. Efendiev, Mixed multiscale finite element methods for stochastic porous media flows. SIAM J. Sci. Comput.30 (2009) 2319–2339. Zbl1171.76022MR2429468
  2. [2] G. Allaire and M. Amar, Boundary layer tails in periodic homogenization. ESAIM: COCV 4 (1999) 209–243. Zbl0922.35014MR1696289
  3. [3] G. Allaire and R. Brizzi, A multiscale finite element method for numerical homogenization. SIAM Multiscale Model. Simul.4 (2005) 790–812. Zbl1093.35007MR2203941
  4. [4] A. Anantharaman, Ph.D. thesis, Thèse de l’Université Paris-Est (2011). Available at http://tel.archives-ouvertes.fr/tel-00558618/fr 
  5. [5] A. Anantharaman, R. Costaouec, C. Le Bris, F. Legoll and F. Thomines, Introduction to numerical stochastic homogenization and the related computational challenges: some recent developments, in Multiscale Modeling and Analysis for Materials Simulation, vol. 22 of Lect. Notes Ser., edited by W. Bao and Q. Du. Institute for Mathematical Sciences, National University of Singapore (2011) 197–272. MR2895600
  6. [6] A. Anantharaman and C. Le Bris, Homogénéisation d’un matériau périodique faiblement perturbé aléatoirement [Homogenization of a weakly randomly perturbed periodic material]. C.R. Acad. Sci. Sér. I348 (2010) 529–534. Zbl1193.35008MR2645167
  7. [7] A. Anantharaman and C. Le Bris, A numerical approach related to defect-type theories for some weakly random problems in homogenization. SIAM Multiscale Model. Simul.9 (2011) 513–544. Zbl1233.35014MR2818410
  8. [8] A. Anantharaman and C. Le Bris, Elements of mathematical foundations for a numerical approach for weakly random homogenization problems. Commun. Comput. Phys.11 (2012) 1103-1143. MR2864078
  9. [9] M. Avellaneda and F. H. Lin, Compactness methods in the theory of homogenization. Commun. Pure Appl. Math.40 (1987) 803–847. Zbl0632.35018MR910954
  10. [10] G. Bal, J. Garnier, S. Motsch and V. Perrier, Random integrals and correctors in homogenization. Asymptot. Anal.59 (2008) 1–26. Zbl1157.34048MR2435670
  11. [11] G. Bal and W. Jing, Corrector theory for MsFEM and HMM in random media. SIAM Multiscale Model. Simul.9 (2011) 1549–1587. Zbl1244.65004MR2861250
  12. [12] A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures, vol. 5 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam, New York (1978). Zbl0404.35001MR503330
  13. [13] X. Blanc, R. Costaouec, C. Le Bris and F. Legoll, Variance reduction in stochastic homogenization using antithetic variables. Markov Processes and Related Fields 18 (2012) 31–66. (preliminary version available at http://cermics.enpc.fr/˜legoll/hdr/FL24.pdf). Zbl1260.35260MR2952018
  14. [14] X. Blanc, C. Le Bris and P.-L. Lions, Une variante de la théorie de l’homogénéisation stochastique des opérateurs elliptiques [A variant of stochastic homogenization theory for elliptic operators]. C.R. Acad. Sci. Sér. I343 (2006) 717–724. Zbl1103.35014MR2284699
  15. [15] X. Blanc, C. Le Bris and P.-L. Lions, Stochastic homogenization and random lattices. J. Math. Pures Appl.88 (2007) 34–63. Zbl1129.60055MR2334772
  16. [16] A. Bourgeat and A. Piatnitski, Estimates in probability of the residual between the random and the homogenized solutions of one-dimensional second-order operator. Asymptot. Anal.21 (1999) 303–315. Zbl0960.60057MR1728027
  17. [17] L. Carballal Perdiz, Etude d’une méthodologie multiéchelles appliquée à différents problèmes en milieu continu et discret (in french). Thèse de l’Université Toulouse III (2010). Available at http://thesesups.ups-tlse.fr/1170/. 
  18. [18] Z. Chen, Multiscale methods for elliptic homogenization problems, Numer. Methods Partial Differ. Eq.22 (2006) 317–360. Zbl1091.65113MR2201437
  19. [19] Z. Chen, M. Cui, T. Y. Savchuk and X. Yu, The multiscale finite element method with nonconforming elements for elliptic homogenization problems. SIAM Multiscale Model. Simul.7 (2008) 517–538. Zbl1191.35038MR2443001
  20. [20] Z. Chen and T.Y. Hou, A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comput.72 (2002) 541–576. Zbl1017.65088MR1954956
  21. [21] Z. Chen and T.Y. Savchuk, Analysis of the multiscale finite element method for nonlinear and random homogenization problems. SIAM J. Numer. Anal.46 (2008) 260–279. Zbl1170.35007MR2377263
  22. [22] P.G. Ciarlet, The finite element method for elliptic problems. North-Holland (1978). Zbl0511.65078MR520174
  23. [23] D. Cioranescu and P. Donato, An introduction to homogenization. In vol. 17 of Oxford Lect. Ser. Math. Appl. The Clarendon Press, Oxford University Press, New York (1999). Zbl0939.35001MR1765047
  24. [24] R. Costaouec, Asymptotic expansion of the homogenized matrix in two weakly stochastic homogenization settings. Appl. Math. Res. Express2012 (2012) 76–104. Zbl1243.65007MR2900147
  25. [25] R. Costaouec, C. Le Bris and F. Legoll, Approximation numérique d’une classe de problèmes en homogénéisation stochastique [Numerical approximation of a class of problems in stochastic homogenization]. C.R. Acad. Sci. Série I348 (2010) 99–103. Zbl1180.65166MR2586753
  26. [26] P. Dostert, Y.R. Efendiev and T.Y. Hou, Multiscale finite element methods for stochastic porous media flow equations and application to uncertainty quantification. Comput. Methods Appl. Mechanics Engrg.197 (2008) 3445–3455. Zbl1194.76112MR2449167
  27. [27] W. E and B. Engquist, The heterogeneous multiscale methods. Commun. Math. Sci. 1 (2003) 87–132. Zbl1093.35012MR1979846
  28. [28] W. E and B. Engquist, The Heterogeneous Multiscale Method for homogenization problems, in Multiscale Methods in Science and Engineering, vol. 44, Lect. Notes Comput. Sci. Engrg. Springer, Berlin (2005) 89–110. Zbl1086.65521
  29. [29] W. E, B. Engquist, X. Li, W. Ren and E. Vanden-Eijnden, Heterogeneous multiscale methods: a review. Commun. Comput. Phys. 2 (2007) 367–450. Zbl1164.65496MR2314852
  30. [30] Y.R. Efendiev and T.Y. Hou, Multiscale finite element methods: theory and applications, Surveys and tutorials in the applied mathematical sciences. Springer, New York (2009). Zbl1163.65080MR2477579
  31. [31] Y.R. Efendiev, T.Y. Hou and V. Ginting, Multiscale finite element methods for nonlinear problems and their applications. Commun. Math. Sci.2 (2004) 553–589. Zbl1083.65105MR2119929
  32. [32] Y.R. Efendiev, T.Y. Hou and X.-H. Wu, Convergence of a nonconforming multiscale finite element method. SIAM J. Numer. Anal.37 (2000) 888–910. Zbl0951.65105MR1740386
  33. [33] FreeFEM, http://www.freefem.org 
  34. [34] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, reprint of the 1998 edn., Classics in Mathematics. Springer (2001). Zbl1042.35002MR1814364
  35. [35] V. Ginting, A. Malqvist and M. Presho, A novel method for solving multiscale elliptic problems with randomly perturbed data. SIAM Multiscale Model. Simul.8 (2010) 977–996. Zbl1200.65005MR2644320
  36. [36] A. Gloria, An analytical framework for numerical homogenization. Part II: Windowing and oversampling. SIAM Multiscale Model. Simul. 7 (2008) 274–293. Zbl1156.74362MR2399546
  37. [37] T.Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys.134 (1997) 169–189. Zbl0880.73065MR1455261
  38. [38] T.Y. Hou, X.-H. Wu and Z. Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comput.68 (1999) 913–943. Zbl0922.65071MR1642758
  39. [39] T.Y. Hou, X.-H. Wu and Y. Zhang, Removing the cell resonance error in the multiscale finite element method via a Petrov-Galerkin formulation. Commun. Math. Sci.2 (2004) 185–205. Zbl1085.65109MR2119937
  40. [40] V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of differential operators and integral functionals. Springer-Verlag (1994). Zbl0801.35001MR1329546
  41. [41] C. Le Bris, Some numerical approaches for “weakly” random homogenization, Numerical Mathematics and Advanced Applications 2009, in Proc. of ENUMATH 2009. Edited by G. Kreiss et al. Springer Lect. Ser. Notes Comput. Sci. Engrg. (2010) 29–45. Zbl1311.74101
  42. [42] C. Le Bris, F. Legoll and F. Thomines, Rate of convergence of a two-scale expansion for some weakly stochastic homogenization problems. Asymptot. Anal.80 (2012) 237–267. Zbl1264.35022MR3025045
  43. [43] F. Legoll and F. Thomines, On a variant of random homogenization theory: convergence of the residual process and approximation of the homogenized coefficients. ESAIM: M2AN 48 (2014) 347–386. Zbl1323.35232MR3177849
  44. [44] A. Lozinski, Habilitation à Diriger des Recherches, Université Paul Sabatier, Toulouse (2010). Available at http://www.math.univ-toulouse.fr/. 
  45. [45] Y. Maday, Reduced basis method for the rapid and reliable solution of partial differential equations, in vol. III of Intern. Congress of Math., Eur. Math. Soc. Zürich (2006) 1255–1270. Zbl1100.65079MR2275727
  46. [46] Y. Mittal, Limiting behavior of maxima in stationary Gaussian sequences. Ann. Probab.2 (1974) 231–242. Zbl0279.60025MR372979
  47. [47] G.C. Papanicolaou and S.R.S. Varadhan, Boundary value problems with rapidly oscillating random coefficients, in vol. 10 of Proc. Colloq. on Random Fields: Rigorous Results in Statistical Mechanics and Quantum Field Theory, 1979. Edited by J. Fritz, J.L. Lebaritz and D. Szasz. Colloquia Mathematica Societ. J. Bolyai, North-Holland (1981) 835–873. Zbl0499.60059MR712714
  48. [48] L. Tartar, Estimations of homogenized coefficients, in Topics in the mathematical modelling of composite materials, vol. 31 of Progr. Nonlinear Differ. Equ. Appl., edited by A. Cherkaev and R. Kohn. Birkhäuser (1987). Zbl0920.35018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.