Multiscale Finite Element approach for “weakly” random problems and related issues
Claude Le Bris; Frédéric Legoll; Florian Thomines
- Volume: 48, Issue: 3, page 815-858
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topLe Bris, Claude, Legoll, Frédéric, and Thomines, Florian. "Multiscale Finite Element approach for “weakly” random problems and related issues." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 48.3 (2014): 815-858. <http://eudml.org/doc/273339>.
@article{LeBris2014,
abstract = {We address multiscale elliptic problems with random coefficients that are a perturbation of multiscale deterministic problems. Our approach consists in taking benefit of the perturbative context to suitably modify the classical Finite Element basis into a deterministic multiscale Finite Element basis. The latter essentially shares the same approximation properties as a multiscale Finite Element basis directly generated on the random problem. The specific reference method that we use is the Multiscale Finite Element Method. Using numerical experiments, we demonstrate the efficiency of our approach and the computational speed-up with respect to a more standard approach. In the stationary setting, we provide a complete analysis of the approach, extending that available for the deterministic periodic setting.},
author = {Le Bris, Claude, Legoll, Frédéric, Thomines, Florian},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {weakly stochastic homogenization; finite elements; Galerkin methods; highly oscillatory PDE; numerical experiment},
language = {eng},
number = {3},
pages = {815-858},
publisher = {EDP-Sciences},
title = {Multiscale Finite Element approach for “weakly” random problems and related issues},
url = {http://eudml.org/doc/273339},
volume = {48},
year = {2014},
}
TY - JOUR
AU - Le Bris, Claude
AU - Legoll, Frédéric
AU - Thomines, Florian
TI - Multiscale Finite Element approach for “weakly” random problems and related issues
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2014
PB - EDP-Sciences
VL - 48
IS - 3
SP - 815
EP - 858
AB - We address multiscale elliptic problems with random coefficients that are a perturbation of multiscale deterministic problems. Our approach consists in taking benefit of the perturbative context to suitably modify the classical Finite Element basis into a deterministic multiscale Finite Element basis. The latter essentially shares the same approximation properties as a multiscale Finite Element basis directly generated on the random problem. The specific reference method that we use is the Multiscale Finite Element Method. Using numerical experiments, we demonstrate the efficiency of our approach and the computational speed-up with respect to a more standard approach. In the stationary setting, we provide a complete analysis of the approach, extending that available for the deterministic periodic setting.
LA - eng
KW - weakly stochastic homogenization; finite elements; Galerkin methods; highly oscillatory PDE; numerical experiment
UR - http://eudml.org/doc/273339
ER -
References
top- [1] J. Aarnes and Y.R. Efendiev, Mixed multiscale finite element methods for stochastic porous media flows. SIAM J. Sci. Comput.30 (2009) 2319–2339. Zbl1171.76022MR2429468
- [2] G. Allaire and M. Amar, Boundary layer tails in periodic homogenization. ESAIM: COCV 4 (1999) 209–243. Zbl0922.35014MR1696289
- [3] G. Allaire and R. Brizzi, A multiscale finite element method for numerical homogenization. SIAM Multiscale Model. Simul.4 (2005) 790–812. Zbl1093.35007MR2203941
- [4] A. Anantharaman, Ph.D. thesis, Thèse de l’Université Paris-Est (2011). Available at http://tel.archives-ouvertes.fr/tel-00558618/fr
- [5] A. Anantharaman, R. Costaouec, C. Le Bris, F. Legoll and F. Thomines, Introduction to numerical stochastic homogenization and the related computational challenges: some recent developments, in Multiscale Modeling and Analysis for Materials Simulation, vol. 22 of Lect. Notes Ser., edited by W. Bao and Q. Du. Institute for Mathematical Sciences, National University of Singapore (2011) 197–272. MR2895600
- [6] A. Anantharaman and C. Le Bris, Homogénéisation d’un matériau périodique faiblement perturbé aléatoirement [Homogenization of a weakly randomly perturbed periodic material]. C.R. Acad. Sci. Sér. I348 (2010) 529–534. Zbl1193.35008MR2645167
- [7] A. Anantharaman and C. Le Bris, A numerical approach related to defect-type theories for some weakly random problems in homogenization. SIAM Multiscale Model. Simul.9 (2011) 513–544. Zbl1233.35014MR2818410
- [8] A. Anantharaman and C. Le Bris, Elements of mathematical foundations for a numerical approach for weakly random homogenization problems. Commun. Comput. Phys.11 (2012) 1103-1143. MR2864078
- [9] M. Avellaneda and F. H. Lin, Compactness methods in the theory of homogenization. Commun. Pure Appl. Math.40 (1987) 803–847. Zbl0632.35018MR910954
- [10] G. Bal, J. Garnier, S. Motsch and V. Perrier, Random integrals and correctors in homogenization. Asymptot. Anal.59 (2008) 1–26. Zbl1157.34048MR2435670
- [11] G. Bal and W. Jing, Corrector theory for MsFEM and HMM in random media. SIAM Multiscale Model. Simul.9 (2011) 1549–1587. Zbl1244.65004MR2861250
- [12] A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures, vol. 5 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam, New York (1978). Zbl0404.35001MR503330
- [13] X. Blanc, R. Costaouec, C. Le Bris and F. Legoll, Variance reduction in stochastic homogenization using antithetic variables. Markov Processes and Related Fields 18 (2012) 31–66. (preliminary version available at http://cermics.enpc.fr/˜legoll/hdr/FL24.pdf). Zbl1260.35260MR2952018
- [14] X. Blanc, C. Le Bris and P.-L. Lions, Une variante de la théorie de l’homogénéisation stochastique des opérateurs elliptiques [A variant of stochastic homogenization theory for elliptic operators]. C.R. Acad. Sci. Sér. I343 (2006) 717–724. Zbl1103.35014MR2284699
- [15] X. Blanc, C. Le Bris and P.-L. Lions, Stochastic homogenization and random lattices. J. Math. Pures Appl.88 (2007) 34–63. Zbl1129.60055MR2334772
- [16] A. Bourgeat and A. Piatnitski, Estimates in probability of the residual between the random and the homogenized solutions of one-dimensional second-order operator. Asymptot. Anal.21 (1999) 303–315. Zbl0960.60057MR1728027
- [17] L. Carballal Perdiz, Etude d’une méthodologie multiéchelles appliquée à différents problèmes en milieu continu et discret (in french). Thèse de l’Université Toulouse III (2010). Available at http://thesesups.ups-tlse.fr/1170/.
- [18] Z. Chen, Multiscale methods for elliptic homogenization problems, Numer. Methods Partial Differ. Eq.22 (2006) 317–360. Zbl1091.65113MR2201437
- [19] Z. Chen, M. Cui, T. Y. Savchuk and X. Yu, The multiscale finite element method with nonconforming elements for elliptic homogenization problems. SIAM Multiscale Model. Simul.7 (2008) 517–538. Zbl1191.35038MR2443001
- [20] Z. Chen and T.Y. Hou, A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comput.72 (2002) 541–576. Zbl1017.65088MR1954956
- [21] Z. Chen and T.Y. Savchuk, Analysis of the multiscale finite element method for nonlinear and random homogenization problems. SIAM J. Numer. Anal.46 (2008) 260–279. Zbl1170.35007MR2377263
- [22] P.G. Ciarlet, The finite element method for elliptic problems. North-Holland (1978). Zbl0511.65078MR520174
- [23] D. Cioranescu and P. Donato, An introduction to homogenization. In vol. 17 of Oxford Lect. Ser. Math. Appl. The Clarendon Press, Oxford University Press, New York (1999). Zbl0939.35001MR1765047
- [24] R. Costaouec, Asymptotic expansion of the homogenized matrix in two weakly stochastic homogenization settings. Appl. Math. Res. Express2012 (2012) 76–104. Zbl1243.65007MR2900147
- [25] R. Costaouec, C. Le Bris and F. Legoll, Approximation numérique d’une classe de problèmes en homogénéisation stochastique [Numerical approximation of a class of problems in stochastic homogenization]. C.R. Acad. Sci. Série I348 (2010) 99–103. Zbl1180.65166MR2586753
- [26] P. Dostert, Y.R. Efendiev and T.Y. Hou, Multiscale finite element methods for stochastic porous media flow equations and application to uncertainty quantification. Comput. Methods Appl. Mechanics Engrg.197 (2008) 3445–3455. Zbl1194.76112MR2449167
- [27] W. E and B. Engquist, The heterogeneous multiscale methods. Commun. Math. Sci. 1 (2003) 87–132. Zbl1093.35012MR1979846
- [28] W. E and B. Engquist, The Heterogeneous Multiscale Method for homogenization problems, in Multiscale Methods in Science and Engineering, vol. 44, Lect. Notes Comput. Sci. Engrg. Springer, Berlin (2005) 89–110. Zbl1086.65521
- [29] W. E, B. Engquist, X. Li, W. Ren and E. Vanden-Eijnden, Heterogeneous multiscale methods: a review. Commun. Comput. Phys. 2 (2007) 367–450. Zbl1164.65496MR2314852
- [30] Y.R. Efendiev and T.Y. Hou, Multiscale finite element methods: theory and applications, Surveys and tutorials in the applied mathematical sciences. Springer, New York (2009). Zbl1163.65080MR2477579
- [31] Y.R. Efendiev, T.Y. Hou and V. Ginting, Multiscale finite element methods for nonlinear problems and their applications. Commun. Math. Sci.2 (2004) 553–589. Zbl1083.65105MR2119929
- [32] Y.R. Efendiev, T.Y. Hou and X.-H. Wu, Convergence of a nonconforming multiscale finite element method. SIAM J. Numer. Anal.37 (2000) 888–910. Zbl0951.65105MR1740386
- [33] FreeFEM, http://www.freefem.org
- [34] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, reprint of the 1998 edn., Classics in Mathematics. Springer (2001). Zbl1042.35002MR1814364
- [35] V. Ginting, A. Malqvist and M. Presho, A novel method for solving multiscale elliptic problems with randomly perturbed data. SIAM Multiscale Model. Simul.8 (2010) 977–996. Zbl1200.65005MR2644320
- [36] A. Gloria, An analytical framework for numerical homogenization. Part II: Windowing and oversampling. SIAM Multiscale Model. Simul. 7 (2008) 274–293. Zbl1156.74362MR2399546
- [37] T.Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys.134 (1997) 169–189. Zbl0880.73065MR1455261
- [38] T.Y. Hou, X.-H. Wu and Z. Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comput.68 (1999) 913–943. Zbl0922.65071MR1642758
- [39] T.Y. Hou, X.-H. Wu and Y. Zhang, Removing the cell resonance error in the multiscale finite element method via a Petrov-Galerkin formulation. Commun. Math. Sci.2 (2004) 185–205. Zbl1085.65109MR2119937
- [40] V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of differential operators and integral functionals. Springer-Verlag (1994). Zbl0801.35001MR1329546
- [41] C. Le Bris, Some numerical approaches for “weakly” random homogenization, Numerical Mathematics and Advanced Applications 2009, in Proc. of ENUMATH 2009. Edited by G. Kreiss et al. Springer Lect. Ser. Notes Comput. Sci. Engrg. (2010) 29–45. Zbl1311.74101
- [42] C. Le Bris, F. Legoll and F. Thomines, Rate of convergence of a two-scale expansion for some weakly stochastic homogenization problems. Asymptot. Anal.80 (2012) 237–267. Zbl1264.35022MR3025045
- [43] F. Legoll and F. Thomines, On a variant of random homogenization theory: convergence of the residual process and approximation of the homogenized coefficients. ESAIM: M2AN 48 (2014) 347–386. Zbl1323.35232MR3177849
- [44] A. Lozinski, Habilitation à Diriger des Recherches, Université Paul Sabatier, Toulouse (2010). Available at http://www.math.univ-toulouse.fr/.
- [45] Y. Maday, Reduced basis method for the rapid and reliable solution of partial differential equations, in vol. III of Intern. Congress of Math., Eur. Math. Soc. Zürich (2006) 1255–1270. Zbl1100.65079MR2275727
- [46] Y. Mittal, Limiting behavior of maxima in stationary Gaussian sequences. Ann. Probab.2 (1974) 231–242. Zbl0279.60025MR372979
- [47] G.C. Papanicolaou and S.R.S. Varadhan, Boundary value problems with rapidly oscillating random coefficients, in vol. 10 of Proc. Colloq. on Random Fields: Rigorous Results in Statistical Mechanics and Quantum Field Theory, 1979. Edited by J. Fritz, J.L. Lebaritz and D. Szasz. Colloquia Mathematica Societ. J. Bolyai, North-Holland (1981) 835–873. Zbl0499.60059MR712714
- [48] L. Tartar, Estimations of homogenized coefficients, in Topics in the mathematical modelling of composite materials, vol. 31 of Progr. Nonlinear Differ. Equ. Appl., edited by A. Cherkaev and R. Kohn. Birkhäuser (1987). Zbl0920.35018
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.