The six operations for sheaves on Artin stacks I: Finite coefficients

Yves Laszlo; Martin Olsson

Publications Mathématiques de l'IHÉS (2008)

  • Volume: 107, page 109-168
  • ISSN: 0073-8301

Abstract

top
In this paper we develop a theory of Grothendieck’s six operations of lisse-étale constructible sheaves on Artin stacks locally of finite type over certain excellent schemes of finite Krull dimension. We also give generalizations of the classical base change theorems and Kunneth formula to stacks, and prove new results about cohomological descent for unbounded complexes.

How to cite

top

Laszlo, Yves, and Olsson, Martin. "The six operations for sheaves on Artin stacks I: Finite coefficients." Publications Mathématiques de l'IHÉS 107 (2008): 109-168. <http://eudml.org/doc/273595>.

@article{Laszlo2008,
abstract = {In this paper we develop a theory of Grothendieck’s six operations of lisse-étale constructible sheaves on Artin stacks locally of finite type over certain excellent schemes of finite Krull dimension. We also give generalizations of the classical base change theorems and Kunneth formula to stacks, and prove new results about cohomological descent for unbounded complexes.},
author = {Laszlo, Yves, Olsson, Martin},
journal = {Publications Mathématiques de l'IHÉS},
language = {eng},
pages = {109-168},
publisher = {Institut des hautes études scientifiques},
title = {The six operations for sheaves on Artin stacks I: Finite coefficients},
url = {http://eudml.org/doc/273595},
volume = {107},
year = {2008},
}

TY - JOUR
AU - Laszlo, Yves
AU - Olsson, Martin
TI - The six operations for sheaves on Artin stacks I: Finite coefficients
JO - Publications Mathématiques de l'IHÉS
PY - 2008
PB - Institut des hautes études scientifiques
VL - 107
SP - 109
EP - 168
AB - In this paper we develop a theory of Grothendieck’s six operations of lisse-étale constructible sheaves on Artin stacks locally of finite type over certain excellent schemes of finite Krull dimension. We also give generalizations of the classical base change theorems and Kunneth formula to stacks, and prove new results about cohomological descent for unbounded complexes.
LA - eng
UR - http://eudml.org/doc/273595
ER -

References

top
  1. [1] K. A. Behrend, Derived l-Adic Categories for Algebraic Stacks, Mem. Amer. Math. Soc., vol. 163, no. 774, Amer. Math. Soc., Providence, RI, 2003. Zbl1051.14023MR1963494
  2. [2] Beĭlinson, A.A., Bernstein, J., Deligne, P. (1982) Faisceaux pervers. Analysis and Topology on Singular Spaces, I (Luminy, 1981). Soc. Math. France, Paris Zbl0536.14011MR751966
  3. [3] Bokstedt, M., Neeman, A. (1993) Homotopy limits in triangulated categories. Compos. Math. 86: pp. 209-234 Zbl0802.18008MR1214458
  4. [4] Deligne, P. (1977) Cohomologie étale. Séminaire de Géométrie Algébrique du Bois-Marie SGA ( 4 1 2 ) . Springer, Berlin Zbl0345.00010MR463174
  5. [5] J. Dieudonné and A. Grothendieck, Éléments de géométrie algébrique, Publ. Math., Inst. Hautes Étud. Sci., 4, 8, 11, 17, 20, 24, 28, 32 (1961-1967). Zbl0122.16102
  6. [6] Freitag, E., Kiehl, R. (1988) Étale cohomology and the Weil conjecture. Springer, Berlin Zbl0643.14012MR926276
  7. [7] Frenkel, E., Gaitsgory, D., Vilonen, K. (2002) On the geometric Langland’s conjecture. J. Amer. Math. Soc. 15: pp. 367-417 Zbl1071.11039MR1887638
  8. [8] K. Fujiwara, A proof of the absolute purity conjecture (after Gabber), in S. Usui, M. Green, L. Illusie, K. Kato, E. Looijenga, S. Mukai, S. Saito (eds.), Algebraic Geometry 2000, Azumino, Adv. Stud. Pure Math., vol. 36, pp. 153-183, Math. Soc. Japan, Tokyo, 2002. Zbl1059.14026MR1971516
  9. [9] O. Gabber, A finiteness theorem for non abelian H1 of excellent schemes, in Conférence en l’honneur de L. Illusie, Orsay (2005), http://www.math.polytechnique.fr/~laszlo/gdtgabber/non-abelien.pdf. 
  10. [10] O. Gabber, Finiteness theorems for étale cohomology of excellent schemes, in Conference in Honor of P. Deligne on the Occasion of his 61st Birthday, IAS, Princeton (2005), http://www.math.polytechnique.fr/~laszlo/gdtgabber/abelien.pdf. 
  11. [11] P.-P. Grivel, Catégories dérivées et foncteurs dérivés, in A. Borel (ed.), Algebraic D-Modules, Perspect. Math., vol. 2, Academic Press, Boston, MA, 1987. 
  12. [12] Grothendieck, A. (2003) Revétements étales et groupe fondamental. Séminaire de Géométrie Algébrique du Bois-Marie (SGA 1). Société Mathématique de France, Paris Zbl1039.14001MR2017446
  13. [13] Artin, M., Grothendieck, A., Verdier, J.-L. (1972) Revétements étales et groupe fondamental. Séminaire de Géométrie Algébrique du Bois-Marie (SGA 1). Société Mathématique de France, Paris Zbl1039.14001
  14. [14] A. Grothendieck, Cohomologie l-adique et fonctions L, in L. Illusie (ed.), Séminaire de Géometrie Algébrique du Bois-Marie (SGA 5), Lect. Notes Math., vol. 589, Springer, Berlin, 1977. Zbl0345.00011MR463174
  15. [15] L. Illusie, Y. Laszlo, and F. Orgogozo, Théorème de finitude en cohomologie étale, d’après Gabber, in preparation, École Polytechnique (2007), http://www.math.polytechnique.fr/~laszlo/gdtgabber/gdtgabber.html. 
  16. [16] Kashiwara, M., Schapira, P. (2006) Categories and Sheaves. Springer, Berlin Zbl1118.18001MR2182076
  17. [17] Y. Laszlo and M. Olsson, The six operations for sheaves on Artin stacks II: Adic Coefficients, Publ. Math., Inst. Hautes Étud. Sci., (2008). Zbl1191.14003MR2434693
  18. [18] Y. Laszlo and M. Olsson, Perverse sheaves on Artin stacks, Math. Z., to appear. Zbl1137.14004MR2480756
  19. [19] Laumon, G. (2003) Transformation de Fourier homogène. Bull. Soc. Math. Fr. 131: pp. 527-551 Zbl1088.11044MR2044494
  20. [20] Laumon, G., Moret-Bailly, L. (2000) Champs algébriques. Springer, Berlin Zbl0945.14005MR1771927
  21. [21] G. Laumon and B. C. Ngo, Le lemme fondamental pour les groupes unitaires, preprint (2004), http://arxiv.org/abs/math/0404454. Zbl1179.22019MR2434884
  22. [22] Neeman, A. (1996) The Grothendieck duality theorem via Bousfield’s techniques and Brown representability. J. Amer. Math. Soc. 9: pp. 205-236 Zbl0864.14008MR1308405
  23. [23] Olsson, M. (2007) Sheaves on Artin stacks. J. Reine Angew. Math. 603: pp. 55-112 Zbl1137.14004MR2312554
  24. [24] J. Riou, Pureté (d’après Ofer Gabber), in Théorèmes de finitude en cohomogie étale d’après Ofer Gabber, in preparation, preprint (2007), http://www.math.u-psud.fr/~riou/doc/gysin.pdf. 
  25. [25] Serpét, C. (2003) Resolution of unbounded complexes in Grothendieck categories. J. Pure Appl. Algebra 177: pp. 103-112 Zbl1033.18007MR1948842
  26. [26] Serre, J.-P. (1994) Cohomologie galoisienne. Springer, Berlin Zbl0812.12002MR1324577
  27. [27] Spaltenstein, N. (1988) Resolutions of unbounded complexes. Compos. Math. 65: pp. 121-154 Zbl0636.18006MR932640

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.