The six operations for sheaves on Artin stacks II: Adic coefficients

Yves Laszlo; Martin Olsson

Publications Mathématiques de l'IHÉS (2008)

  • Volume: 107, page 169-210
  • ISSN: 0073-8301

How to cite

top

Laszlo, Yves, and Olsson, Martin. "The six operations for sheaves on Artin stacks II: Adic coefficients." Publications Mathématiques de l'IHÉS 107 (2008): 169-210. <http://eudml.org/doc/273596>.

@article{Laszlo2008,
author = {Laszlo, Yves, Olsson, Martin},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Artin stacks; derived categories; sheaves; Grothendieck operations; base change theorems; Kunneth formula; duality; complexes},
language = {eng},
pages = {169-210},
publisher = {Institut des hautes études scientifiques},
title = {The six operations for sheaves on Artin stacks II: Adic coefficients},
url = {http://eudml.org/doc/273596},
volume = {107},
year = {2008},
}

TY - JOUR
AU - Laszlo, Yves
AU - Olsson, Martin
TI - The six operations for sheaves on Artin stacks II: Adic coefficients
JO - Publications Mathématiques de l'IHÉS
PY - 2008
PB - Institut des hautes études scientifiques
VL - 107
SP - 169
EP - 210
LA - eng
KW - Artin stacks; derived categories; sheaves; Grothendieck operations; base change theorems; Kunneth formula; duality; complexes
UR - http://eudml.org/doc/273596
ER -

References

top
  1. [1] K. A. Behrend, Derived l-Adic Categories for Algebraic Stacks, Mem. Amer. Math. Soc., vol. 163, no. 774, Amer. Math. Soc., Providence, RI, 2003. Zbl1051.14023MR1963494
  2. [2] Beĭlinson, A.A., Bernstein, J., Deligne, P. (1982) Faisceaux pervers. Analysis and Topology on Singular Spaces, I (Luminy, 1981). Soc. Math. France, Paris Zbl0536.14011MR751966
  3. [3] Bokstedt, M., Neeman, A. (1993) Homotopy limits in triangulated categories. Compos. Math. 86: pp. 209-234 Zbl0802.18008MR1214458
  4. [4] Deligne, P. (1980) La conjecture de Weil II. Publ. Math., Inst. Hautes Étud. Sci. 52: pp. 137-252 Zbl0456.14014MR601520
  5. [5] Deligne, P. (1977) Cohomologie étale. Séminaire de Géométrie Algébrique du Bois-Marie SGA ( 4 1 2 ) . Springer, Berlin Zbl0345.00010MR463174
  6. [6] Ekedahl, T. (1985) On the multiplicative properties of the de Rham-Witt complex. II. Ark. Mat. 23: pp. 53-102 Zbl0575.14017MR800174
  7. [7] Ekedahl, T. (1990) On the adic formalism. The Grothendieck Festschrift, vol. II. Birkhäuser, Boston, MA Zbl0821.14010MR1106899
  8. [8] Gabber, O. (2004) Notes on some t-structures. Geometric Aspects of Dwork Theory, vol. II. Walter de Gruyter, Berlin, pp. 711-734 Zbl1074.14018MR2099084
  9. [9] P.-P. Grivel, Catégories dérivées et foncteurs dérivés, in A. Borel (ed.) Algebraic D-Modules, Perspect. Math., vol. 2, Academic Press, Boston, MA, 1987. MR882000
  10. [10] M. Artin, A. Grothendieck, and J.-L. Verdier, Théorie des topos et cohomologie étale des schémas, in Séminaire de Géométrie Algébrique du Bois-Marie (SGA 4), Lect. Notes Math. vols. 269, 270, 305, Springer, Berlin, 1972. Zbl0234.00007
  11. [11] A. Grothendieck et al., Cohomologie l-adique et fonctions L, in L. Illusie (ed.) Séminaire de Géometrie Algébrique du Bois-Marie (SGA 5), Lect. Notes Math., vol. 589, Springer, Berlin, 1977. Zbl0345.00011MR463174
  12. [12] Jannsen, U. (1988) Continuous étale cohomology. Math. Ann. 280: pp. 207-245 Zbl0649.14011MR929536
  13. [13] Keller, B. (1998) On the cyclic homology of ringed spaces and schemes. Doc. Math. 3: pp. 177-205 Zbl0917.19002MR1647519
  14. [14] Y. Laszlo and M. Olsson, The six operations for sheaves on Artin stacks I: Finite coefficients, Publ. Math., Inst. Hautes Étud. Sci., (2008). Zbl1191.14002MR2434692
  15. [15] Y. Laszlo and M. Olsson, Perverse sheaves on Artin stacks, Math. Z., to appear. Zbl1137.14004MR2480756
  16. [16] Laumon, G., Moret-Bailly, L. (2000) Champs algébriques. Springer, Berlin Zbl0945.14005MR1771927
  17. [17] Neeman, A. (1996) The Grothendieck duality theorem via Bousfield’s techniques and Brown representability. J. Amer. Math. Soc. 9: pp. 205-236 Zbl0864.14008MR1308405
  18. [18] Neeman, A. (2001) Triangulated Categories. Princeton University Press, Princeton, NJ Zbl0974.18008MR1812507
  19. [19] Olsson, M. (2007) Sheaves on Artin stacks. J. Reine Angew. Math. 603: pp. 55-112 Zbl1137.14004MR2312554
  20. [20] J. Riou, Pureté (d’après Ofer Gabber), in Théorèmes de finitude en cohomogie étale d’après Ofer Gabber, in preparation, preprint (2007), http://www.math.u-psud.fr/~riou/doc/gysin.pdf. 
  21. [21] Spaltenstein, N. (1988) Resolutions of unbounded complexes. Compos. Math. 65: pp. 121-154 Zbl0636.18006MR932640

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.