The six operations for sheaves on Artin stacks II: Adic coefficients
Publications Mathématiques de l'IHÉS (2008)
- Volume: 107, page 169-210
- ISSN: 0073-8301
Access Full Article
topHow to cite
topLaszlo, Yves, and Olsson, Martin. "The six operations for sheaves on Artin stacks II: Adic coefficients." Publications Mathématiques de l'IHÉS 107 (2008): 169-210. <http://eudml.org/doc/273596>.
@article{Laszlo2008,
author = {Laszlo, Yves, Olsson, Martin},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Artin stacks; derived categories; sheaves; Grothendieck operations; base change theorems; Kunneth formula; duality; complexes},
language = {eng},
pages = {169-210},
publisher = {Institut des hautes études scientifiques},
title = {The six operations for sheaves on Artin stacks II: Adic coefficients},
url = {http://eudml.org/doc/273596},
volume = {107},
year = {2008},
}
TY - JOUR
AU - Laszlo, Yves
AU - Olsson, Martin
TI - The six operations for sheaves on Artin stacks II: Adic coefficients
JO - Publications Mathématiques de l'IHÉS
PY - 2008
PB - Institut des hautes études scientifiques
VL - 107
SP - 169
EP - 210
LA - eng
KW - Artin stacks; derived categories; sheaves; Grothendieck operations; base change theorems; Kunneth formula; duality; complexes
UR - http://eudml.org/doc/273596
ER -
References
top- [1] K. A. Behrend, Derived l-Adic Categories for Algebraic Stacks, Mem. Amer. Math. Soc., vol. 163, no. 774, Amer. Math. Soc., Providence, RI, 2003. Zbl1051.14023MR1963494
- [2] Beĭlinson, A.A., Bernstein, J., Deligne, P. (1982) Faisceaux pervers. Analysis and Topology on Singular Spaces, I (Luminy, 1981). Soc. Math. France, Paris Zbl0536.14011MR751966
- [3] Bokstedt, M., Neeman, A. (1993) Homotopy limits in triangulated categories. Compos. Math. 86: pp. 209-234 Zbl0802.18008MR1214458
- [4] Deligne, P. (1980) La conjecture de Weil II. Publ. Math., Inst. Hautes Étud. Sci. 52: pp. 137-252 Zbl0456.14014MR601520
- [5] Deligne, P. (1977) Cohomologie étale. Séminaire de Géométrie Algébrique du Bois-Marie SGA . Springer, Berlin Zbl0345.00010MR463174
- [6] Ekedahl, T. (1985) On the multiplicative properties of the de Rham-Witt complex. II. Ark. Mat. 23: pp. 53-102 Zbl0575.14017MR800174
- [7] Ekedahl, T. (1990) On the adic formalism. The Grothendieck Festschrift, vol. II. Birkhäuser, Boston, MA Zbl0821.14010MR1106899
- [8] Gabber, O. (2004) Notes on some t-structures. Geometric Aspects of Dwork Theory, vol. II. Walter de Gruyter, Berlin, pp. 711-734 Zbl1074.14018MR2099084
- [9] P.-P. Grivel, Catégories dérivées et foncteurs dérivés, in A. Borel (ed.) Algebraic D-Modules, Perspect. Math., vol. 2, Academic Press, Boston, MA, 1987. MR882000
- [10] M. Artin, A. Grothendieck, and J.-L. Verdier, Théorie des topos et cohomologie étale des schémas, in Séminaire de Géométrie Algébrique du Bois-Marie (SGA 4), Lect. Notes Math. vols. 269, 270, 305, Springer, Berlin, 1972. Zbl0234.00007
- [11] A. Grothendieck et al., Cohomologie l-adique et fonctions L, in L. Illusie (ed.) Séminaire de Géometrie Algébrique du Bois-Marie (SGA 5), Lect. Notes Math., vol. 589, Springer, Berlin, 1977. Zbl0345.00011MR463174
- [12] Jannsen, U. (1988) Continuous étale cohomology. Math. Ann. 280: pp. 207-245 Zbl0649.14011MR929536
- [13] Keller, B. (1998) On the cyclic homology of ringed spaces and schemes. Doc. Math. 3: pp. 177-205 Zbl0917.19002MR1647519
- [14] Y. Laszlo and M. Olsson, The six operations for sheaves on Artin stacks I: Finite coefficients, Publ. Math., Inst. Hautes Étud. Sci., (2008). Zbl1191.14002MR2434692
- [15] Y. Laszlo and M. Olsson, Perverse sheaves on Artin stacks, Math. Z., to appear. Zbl1137.14004MR2480756
- [16] Laumon, G., Moret-Bailly, L. (2000) Champs algébriques. Springer, Berlin Zbl0945.14005MR1771927
- [17] Neeman, A. (1996) The Grothendieck duality theorem via Bousfield’s techniques and Brown representability. J. Amer. Math. Soc. 9: pp. 205-236 Zbl0864.14008MR1308405
- [18] Neeman, A. (2001) Triangulated Categories. Princeton University Press, Princeton, NJ Zbl0974.18008MR1812507
- [19] Olsson, M. (2007) Sheaves on Artin stacks. J. Reine Angew. Math. 603: pp. 55-112 Zbl1137.14004MR2312554
- [20] J. Riou, Pureté (d’après Ofer Gabber), in Théorèmes de finitude en cohomogie étale d’après Ofer Gabber, in preparation, preprint (2007), http://www.math.u-psud.fr/~riou/doc/gysin.pdf.
- [21] Spaltenstein, N. (1988) Resolutions of unbounded complexes. Compos. Math. 65: pp. 121-154 Zbl0636.18006MR932640
Citations in EuDML Documents
top- Vincent Lafforgue, Sergey Lysenko, Compatibility of the theta correspondence with the Whittaker functors
- Yves Laszlo, Martin Olsson, The six operations for sheaves on Artin stacks I: Finite coefficients
- Sergey Lysenko, Geometric theta-lifting for the dual pair
- Weizhe Zheng, Sur l’indépendance de en cohomologie -adique sur les corps locaux
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.