Stationary gaussian random fields on hyperbolic spaces and on euclidean spheres

S. Cohen; M. A. Lifshits

ESAIM: Probability and Statistics (2012)

  • Volume: 16, page 165-221
  • ISSN: 1292-8100

Abstract

top
We recall necessary notions about the geometry and harmonic analysis on a hyperbolic space and provide lecture notes about homogeneous random functions parameterized by this space. The general principles are illustrated by construction of numerous examples analogous to Euclidean case. We also give a brief survey of the fields parameterized by Euclidean spheres. At the end we give a list of important open questions in hyperbolic case.

How to cite

top

Cohen, S., and Lifshits, M. A.. "Stationary gaussian random fields on hyperbolic spaces and on euclidean spheres." ESAIM: Probability and Statistics 16 (2012): 165-221. <http://eudml.org/doc/273605>.

@article{Cohen2012,
abstract = {We recall necessary notions about the geometry and harmonic analysis on a hyperbolic space and provide lecture notes about homogeneous random functions parameterized by this space. The general principles are illustrated by construction of numerous examples analogous to Euclidean case. We also give a brief survey of the fields parameterized by Euclidean spheres. At the end we give a list of important open questions in hyperbolic case.},
author = {Cohen, S., Lifshits, M. A.},
journal = {ESAIM: Probability and Statistics},
keywords = {hyperbolic space; random fields; Lévy’s brownian field; Lévy’s Brownian field; Ornstein-Uhlenbeck field; white noise; hyperboloid model; homogeneous fields; horocycles; geodesics; Euclidean sphere},
language = {eng},
pages = {165-221},
publisher = {EDP-Sciences},
title = {Stationary gaussian random fields on hyperbolic spaces and on euclidean spheres},
url = {http://eudml.org/doc/273605},
volume = {16},
year = {2012},
}

TY - JOUR
AU - Cohen, S.
AU - Lifshits, M. A.
TI - Stationary gaussian random fields on hyperbolic spaces and on euclidean spheres
JO - ESAIM: Probability and Statistics
PY - 2012
PB - EDP-Sciences
VL - 16
SP - 165
EP - 221
AB - We recall necessary notions about the geometry and harmonic analysis on a hyperbolic space and provide lecture notes about homogeneous random functions parameterized by this space. The general principles are illustrated by construction of numerous examples analogous to Euclidean case. We also give a brief survey of the fields parameterized by Euclidean spheres. At the end we give a list of important open questions in hyperbolic case.
LA - eng
KW - hyperbolic space; random fields; Lévy’s brownian field; Lévy’s Brownian field; Ornstein-Uhlenbeck field; white noise; hyperboloid model; homogeneous fields; horocycles; geodesics; Euclidean sphere
UR - http://eudml.org/doc/273605
ER -

References

top
  1. [1] J.W. Anderson, Hyperbolic Geometry, 2nd edition. Springer Undergraduate Mathematics Series, Springer-Verlag London Ltd., London (2005). Zbl0934.51012MR2161463
  2. [2] R. Askey and N.H. Bingham, Gaussian processes on compact symmetric spaces. J. Probab. Theory Relat. Fields37 (1976) 127–143. Zbl0329.60019MR423000
  3. [3] S. Barsky, Surface texture using photometric stereo data : classification and direction of illumination detection. J. Math. Imaging Vis.29 (2007) 185–204. MR2385289
  4. [4] J. Bretagnolle, D. Dacunha-Castelle and J.-L. Krivine, Lois stables et espaces Lp. Ann. Inst. Henri Poincaré, Ser. B. 2 (1965/66) 231–259. Zbl0139.33501MR203757
  5. [5] J.W. Cannon, W.J. Floyd, R. Kenyon and W.R. Parry, Hyperbolic geometry, in Flavors of Geometry, edited by S. Levy. Cambridge University Press, Cambridge. Math. Sci. Res. Inst. Publ. 31 (1997) 59–115. Zbl0899.51012MR1491098
  6. [6] N.N. Chentsov, Lévy Brownian Motion for several parameters and generalized white noise. Theory Probab. Appl.2 (1957) 265–266. 
  7. [7] N.N. Chentsov and E.A. Morozova, P. Lévy’s random fields. Theory Probab. Appl. 12 (1967) 153–156. Zbl0196.18702
  8. [8] M. Clerc and S. Mallat, Estimating deformations of stationary processes. Ann. Stat.31 (2003) 1772–1821. Zbl1052.62086MR2036390
  9. [9] J.L. Clerc, J. Faraut, M. Rais, P. Eymard and R. Takahashi, Analyse Harmonique. Les Cours du CIMPA (1980). Zbl0569.43002
  10. [10] J.-L. Dunau and H. Senateur, Characterization of the type of some generalizations of the Cauchy distribution, in Probability measures on Groups IX. Oberwolfach (1988). Lect. Notes Math. 1379 (1989) 64–74. Zbl0681.60020MR1020522
  11. [11] J. Faraut and K. Harzallah, Distances hilbertiennes invariantes sur un espace homogène. Ann. Inst. Fourier (Grenoble) 24 (1974) 171–217. Zbl0265.43013MR365042
  12. [12] R. Gangolli, Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy’s Brownian motion of several parameters. Ann. Inst. Henri Poincaré Sect. B (N.S.) 3 (1967) 121–226. Zbl0157.24902MR215331
  13. [13] J. Garding, Shape from texture and contour by weak isotropy. Artif. Intell.64 (1993) 243–297. Zbl0942.68756MR1259579
  14. [14] R. Godement, Introductions aux travaux de A. Selberg, Séminaire Bourbaki (1957) 95–110. Zbl0202.40902MR1610957
  15. [15] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, VI edition. Academic Press, New York (2000). Zbl0521.33001MR1398882
  16. [16] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, 2nd edition. Academic Press 80 (1978). Zbl0451.53038MR514561
  17. [17] S. Helgason, Groups and Geometric Analysis, edited by American Mathematical Society, Providence, RI. Mathematical Surveys and Monographs 83 (2000). Integral geometry, invariant differential operators, and spherical functions. Corrected reprint of the 1984 original. Zbl0965.43007MR1790156
  18. [18] J. Istas, Spherical and hyperbolic fractional Brownian motion. Electron. Comm. Probab. 10 (2005) 254–262 (electronic). Zbl1112.60029MR2198600
  19. [19] J. Istas, On fractional stable fields indexed by metric spaces. Electron. Comm. Probab. 11 (2006) 242–251 (electronic). Zbl1110.60032MR2266715
  20. [20] J. Istas, Manifold indexed fractional fields. Preprint (2009). Zbl1275.60041MR2956575
  21. [21] N.L. Johnson and S. Kotz, Distributions in statistics : continuous multivariate distributions. Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons Inc., New York (1972). Zbl0248.62021MR418337
  22. [22] P. Lévy, Processus Stochastiques et Mouvement Brownien, 2éme édition, edited by J. Gabay (1965). Zbl0034.22603
  23. [23] E.H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, 2nd edition. American Mathematical Society, Providence, RI 14 (2001). Zbl0966.26002MR1817225
  24. [24] M.A. Lifshits, On the representation of Lévy fields by indicators. Theory Probab. Appl.24 (1980) 629–633. Zbl0446.60038
  25. [25] M.A. Lifshits, Gaussian Random Functions. Kluwer Academic Publishers (1995). Zbl0832.60002MR1472736
  26. [26] H.P. McKean, Brownian Motion with a several-dimensional time. Theory Probab. Appl.8 (1963) 335–354. Zbl0124.08702MR157407
  27. [27] G.M. Molchan, On some problems concerning Brownian motion in Lévy’s sense. Theory Probab. Appl.12 (1967) 682–690. Zbl0159.46504
  28. [28] G.M. Molchan, On homogenious random fields on symmetric spaces of rank 1(Russian). Teor. Veroyatnost. i Mat. Statist. (1979) 123–147. Translated in : Theor. Probab. Math. Statist. (1980) 143–168. Zbl0485.60054MR550252
  29. [29] G.M. Molchan, Multiparametric Brownian motion on symmetric spaces. VNU Sci. Press, Utrecht (1987). Prob. Theory and Math. Stat. II. Vilnius (1985) 275–286. Zbl0653.58045MR901539
  30. [30] G.M. Molchan, Multiparameter Brownian motion (Russian). Teor. Veroyatnost. i Mat. Statist. (1987) 88–101. Translated in : Theor. Probab. Math. Statist. (1988) 97–110. Zbl0659.60073MR913723
  31. [31] G.M. Molchan, Private communication (2009). 
  32. [32] A.G. Robertson, Crofton formulae and geodesic distance in hyperbolic spaces. J. Lie Theory8 (1998) 163–172. Zbl0891.43005MR1616751
  33. [33] W. Rudin, Fourier Analysis on Groups. Wiley Classics Library, John Wiley & Sons Inc., New York (1990). Reprint of the 1962 original, A Wiley-Interscience Publication. Zbl0698.43001MR1038803
  34. [34] L.A. Santaló, Integral geometry on surfaces of constant negative curvature. Duke Math. J.10 (1943) 687–709. Zbl0063.06703MR9469
  35. [35] R. Stanton and P. Thomas, Expansions of spherical functions on non-compact spaces, Acta Math.40 (1978) 251–276. Zbl0411.43014
  36. [36] D.W. Stroock, The Ornstein-Uhlenbeck process in a Riemanian manifold, in Proc. of ICCM’98 (Beijing, 1998), First International congress of Chinese Mathematicians. AMS (2001) 11–23. Zbl1054.60084MR1830163
  37. [37] S. Takenaka, Integral-geometric construction of self-similar stable processes. Nagoya Math. J.123 (1991) 1–12. Zbl0757.60035MR1126180
  38. [38] S. Takenaka, I. Kubo and H. Urakawa, Brownian motion parametrized with metric space of constant curvature. Nagoya Math. J.82 (1981) 131–140. Zbl0483.60008MR618812
  39. [39] N.A. Volodin, Some classes of spherically symmetric distributions. Stability problems for stochastic models (Russian) Sukhumi (1987), Vsesoyuz. Nauchno-Issled. Inst. Sistem. Issled., Moscow (1988), Translated in J. Soviet Math. 57 (1991) 3189–3192, 4–8. Zbl0799.60016MR1079116
  40. [40] A.M. Yaglom, An Introduction to the Theory of Stationary Random Functions. Revised English edition, Prentice-Hall Inc., Englewood Cliffs, N.J. (1962) Zbl0121.12601MR184289

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.