α-time fractional brownian motion: PDE connections and local times

Erkan Nane; Dongsheng Wu; Yimin Xiao

ESAIM: Probability and Statistics (2012)

  • Volume: 16, page 1-24
  • ISSN: 1292-8100

Abstract

top
For 0 < α ≤ 2 and 0 < H < 1, an α-time fractional Brownian motion is an iterated process Z =  {Z(t) = W(Y(t)), t ≥ 0}  obtained by taking a fractional Brownian motion  {W(t), t ∈ ℝ} with Hurst index 0 < H < 1 and replacing the time parameter with a strictly α-stable Lévy process {Y(t), t ≥ 0} in ℝ independent of {W(t), t ∈ R}. It is shown that such processes have natural connections to partial differential equations and, when Y is a stable subordinator, can arise as scaling limit of randomly indexed random walks. The existence, joint continuity and sharp Hölder conditions in the set variable of the local times of a d-dimensional α-time fractional Brownian motion X = {X(t), t ∈ ℝ+} defined by X(t) = (X1(t), ..., Xd(t)), where t ≥ 0 and X1, ..., Xd are independent copies of Z, are investigated. Our methods rely on the strong local nondeterminism of fractional Brownian motion.

How to cite

top

Nane, Erkan, Wu, Dongsheng, and Xiao, Yimin. "α-time fractional brownian motion: PDE connections and local times." ESAIM: Probability and Statistics 16 (2012): 1-24. <http://eudml.org/doc/273606>.

@article{Nane2012,
abstract = {For 0 &lt; α ≤ 2 and 0 &lt; H &lt; 1, an α-time fractional Brownian motion is an iterated process Z =  \{Z(t) = W(Y(t)), t ≥ 0\}  obtained by taking a fractional Brownian motion  \{W(t), t ∈ ℝ\} with Hurst index 0 &lt; H &lt; 1 and replacing the time parameter with a strictly α-stable Lévy process \{Y(t), t ≥ 0\} in ℝ independent of \{W(t), t ∈ R\}. It is shown that such processes have natural connections to partial differential equations and, when Y is a stable subordinator, can arise as scaling limit of randomly indexed random walks. The existence, joint continuity and sharp Hölder conditions in the set variable of the local times of a d-dimensional α-time fractional Brownian motion X = \{X(t), t ∈ ℝ+\} defined by X(t) = (X1(t), ..., Xd(t)), where t ≥ 0 and X1, ..., Xd are independent copies of Z, are investigated. Our methods rely on the strong local nondeterminism of fractional Brownian motion.},
author = {Nane, Erkan, Wu, Dongsheng, Xiao, Yimin},
journal = {ESAIM: Probability and Statistics},
keywords = {fractional brownian motion; strictlyα-stable Lévy process; α-time brownian motion; α-time fractional brownian motion; partial differential equation; local time; Hölder condition; fractional Brownian motion; strictly -stable Lévy process; -time Brownian motion; -time fractional Brownian motion; PDE},
language = {eng},
pages = {1-24},
publisher = {EDP-Sciences},
title = {α-time fractional brownian motion: PDE connections and local times},
url = {http://eudml.org/doc/273606},
volume = {16},
year = {2012},
}

TY - JOUR
AU - Nane, Erkan
AU - Wu, Dongsheng
AU - Xiao, Yimin
TI - α-time fractional brownian motion: PDE connections and local times
JO - ESAIM: Probability and Statistics
PY - 2012
PB - EDP-Sciences
VL - 16
SP - 1
EP - 24
AB - For 0 &lt; α ≤ 2 and 0 &lt; H &lt; 1, an α-time fractional Brownian motion is an iterated process Z =  {Z(t) = W(Y(t)), t ≥ 0}  obtained by taking a fractional Brownian motion  {W(t), t ∈ ℝ} with Hurst index 0 &lt; H &lt; 1 and replacing the time parameter with a strictly α-stable Lévy process {Y(t), t ≥ 0} in ℝ independent of {W(t), t ∈ R}. It is shown that such processes have natural connections to partial differential equations and, when Y is a stable subordinator, can arise as scaling limit of randomly indexed random walks. The existence, joint continuity and sharp Hölder conditions in the set variable of the local times of a d-dimensional α-time fractional Brownian motion X = {X(t), t ∈ ℝ+} defined by X(t) = (X1(t), ..., Xd(t)), where t ≥ 0 and X1, ..., Xd are independent copies of Z, are investigated. Our methods rely on the strong local nondeterminism of fractional Brownian motion.
LA - eng
KW - fractional brownian motion; strictlyα-stable Lévy process; α-time brownian motion; α-time fractional brownian motion; partial differential equation; local time; Hölder condition; fractional Brownian motion; strictly -stable Lévy process; -time Brownian motion; -time fractional Brownian motion; PDE
UR - http://eudml.org/doc/273606
ER -

References

top
  1. [1] R.J. Adler, The Geometry of Random Fields. Wiley, New York (1981). Zbl0478.60059MR611857
  2. [2] H. Allouba and W. Zheng, Brownian-time processes : the pde connection and the half-derivative generator. Ann. Probab.29 (2001) 1780–1795. Zbl1018.60066MR1880242
  3. [3] F. Aurzada and M. Lifshits, On the Small deviation problem for some iterated processes. Electron. J. Probab.14 (2009) 1992–2010. Zbl1190.60016MR2550290
  4. [4] B. Baeumer, M.M. Meerschaert and E. Nane, Brownian subordinators and fractional Cauchy problems. Trans. Amer. Math. Soc.361 (2009) 3915–3930. Zbl1186.60079MR2491905
  5. [5] B. Baeumer, M.M. Meerschaert and E. Nane, Space-time duality for fractional diffusion. J. Appl. Probab.46 (2009) 1100–1115. Zbl1196.60087MR2582709
  6. [6] L. Beghin, L. Sakhno and E. Orsingher, Equations of Mathematical Physics and composition of Brownian and Cauchy processes. Stoch. Anal. Appl.29 (2011) 551–569. Zbl1223.60083MR2812517
  7. [7] S.M. Berman, Local times and sample function properties of stationary Gaussian processes. Trans. Amer. Math. Soc.137 (1969) 277–299. Zbl0184.40801MR239652
  8. [8] S.M. Berman, Local nondeterminism and local times of Gaussian processes. Indiana Univ. Math. J.23 (1973) 69–94. Zbl0264.60024MR317397
  9. [9] J. Bertoin, Lévy Processes. Cambridge University Press (1996). Zbl0938.60005MR1406564
  10. [10] K. Burdzy, Some path properties of iterated Brownian motion, in Seminar on Stochastic Processes, edited by E.Çinlar, K.L. Chung and M.J. Sharpe. Birkhäuser, Boston (1993) 67–87. Zbl0789.60060MR1278077
  11. [11] K. Burdzy and D. Khoshnevisan, The level set of iterated Brownian motion, Séminaire de Probabilités XXIX, edited by J. Azéma, M. Emery, P.-A. Meyer and M. Yor. Lect. Notes Math. 1613 (1995) 231–236. Zbl0853.60061MR1459464
  12. [12] K. Burdzy and D. Khoshnevisan, Brownian motion in a Brownian crack. Ann. Appl. Probab.8 (1998) 708–748. Zbl0937.60081MR1627764
  13. [13] E. Csáki, M. Csörgö, A. Földes and P. Révész, The local time of iterated Brownian motion. J. Theoret. Probab.9 (1996) 717–743. Zbl0857.60081MR1400596
  14. [14] J. Cuzick and J. DuPreez, Joint continuity of Gaussian local times. Ann. Probab.10 (1982) 810–817. Zbl0492.60032MR659550
  15. [15] Y. Davydov, The invariance principle for stationary processes. Teor. Verojatnost. i Primenen.15 (1970) 498–509. Zbl0209.48904MR283872
  16. [16] R.D. DeBlassie, Higher order PDE’s and symmetric stable processes. Probab. Theory Relat. Fields129 (2004) 495–536. Zbl1060.60077MR2078980
  17. [17] R.D. DeBlassie, Iterated Brownian motion in an open set. Ann. Appl. Probab.14 (2004) 1529–1558. Zbl1051.60082MR2071433
  18. [18] M. D’Ovidio and E. Orsingher, Composition of processes and related partial differential equations. J. Theor. Probab.24 (2011) 342–375. Zbl1229.60045MR2795043
  19. [19] W. Ehm, Sample function properties of multi-parameter stable processes. Z. Wahrsch. verw. Geb. 56 (1981) 195–228. Zbl0471.60046MR618272
  20. [20] P. Embrechts and M. Maejima, Selfsimilar Processes. Princeton University Press, Princeton (2002). Zbl1008.60003MR1920153
  21. [21] D. Geman and J. Horowitz, Occupation densities. Ann. Probab.8 (1980) 1–67. Zbl0499.60081MR556414
  22. [22] M. Hahn, K. Kobayashi and S. Umarov, Fokker-Plank-Kolmogorv equations associated with SDEs driven by time-changed fractional Brownian motion. Proc. Amer. Math. Soc.139 (2011) 691–705. Zbl1218.60030MR2736349
  23. [23] Y. Hu, Hausdorff and packing measures of the level sets of iterated Brownian motion. J. Theoret. Probab.12 (1999) 313–346. Zbl0935.60066MR1684747
  24. [24] J.P. Kahane, Some Random Series of Functions, 2nd edition. Cambridge University Press (1985). Zbl0805.60007MR833073
  25. [25] D. Khoshnevisan and Y. Xiao, Images of the Brownian sheet. Trans. Amer. Math. Soc.359 (2007) 3125–3151. Zbl1124.60037MR2299449
  26. [26] M.A. Lifshits, Gaussian Random Functions. Kluwer Academic Publishers, Dordrecht (1995). Zbl0832.60002MR1472736
  27. [27] W. Linde and Z. Shi, Evaluating the small deviation probabilities for subordinated Lévy processes. Stoch. Process. Appl.113 (2004) 273–287. Zbl1076.60039MR2087961
  28. [28] E. Nane, Iterated Brownian motion in parabola-shaped domains. Potential Anal.24 (2006) 105–123. Zbl1090.60071MR2217416
  29. [29] E. Nane, Iterated Brownian motion in bounded domains in ℝn. Stoch. Process. Appl.116 (2006) 905–916. Zbl1106.60309MR2254664
  30. [30] E. Nane, Laws of the iterated logarithm for α-time Brownian motion. Electron. J. Probab.11 (2006) 434–459. Zbl1121.60085MR2223043
  31. [31] E. Nane, Higher order PDE’s and iterated processes. Trans. Amer. Math. Soc.360 (2008) 2681–2692. Zbl1157.60071MR2373329
  32. [32] E. Nane, Laws of the iterated logarithm for a class of iterated processes. Statist. Probab. Lett.79 (2009) 1744–1751. Zbl1173.60317MR2566748
  33. [33] E. Orsingher and L. Beghin, Fractional diffusion equations and processes with randomly varying time, Ann. Probab.37 (2009) 206–249. Zbl1173.60027MR2489164
  34. [34] L.D. Pitt, Local times for Gaussian vector fields. Indiana Univ. Math. J.27 (1978) 309–330. Zbl0382.60055MR471055
  35. [35] G. Samorodnitsky and M.S. Taqqu, Stable non-Gaussian Random Processes : Stochastic models with infinite variance. Chapman & Hall, New York (1994). Zbl0925.60027MR1280932
  36. [36] K.I. Sato, Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press (1999). Zbl1287.60003MR1739520
  37. [37] A.V. Skorokhod, Asymptotic formulas for stable distribution laws. Selected Translations in Mathematical Statistics and Probability 1 (1961) 157–162; Dokl. Akad. Nauk. SSSR 98 (1954) 731–734. Zbl0057.11106MR65839
  38. [38] M. Talagrand, Hausdorff measure of trajectories of multiparameter fractional Brownian motion. Ann. Probab.23 (1995) 767–775. Zbl0830.60034MR1334170
  39. [39] M. Talagrand, Multiple points of trajectories of multiparameter fractional Brownian motion. Probab. Theory Relat. Fields112 (1998) 545–563. Zbl0928.60026MR1664704
  40. [40] M.S. Taqqu, Weak Convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrsch. Verw. Gebiete31 (1975) 287–302. Zbl0303.60033MR400329
  41. [41] S.J. Taylor, Sample path properties of a transient stable process. J. Math. Mech.16 (1967) 1229–1246. Zbl0178.19301MR208684
  42. [42] W. Whitt, Stochastic-Process Limits. Springer, New York (2002). Zbl0993.60001MR1876437
  43. [43] Y. Xiao, Hölder conditions for the local times and Hausdorff measure of the level sets of Gaussian random fields. Probab. Theory Relat. Fields109 (1997) 129–157. Zbl0882.60035MR1469923
  44. [44] Y. Xiao, Local times and related properties of multi-dimensional iterated Brownian motion. J. Theoret. Probab.11 (1998) 383–408. Zbl0914.60063MR1622577

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.