# Polynomial deviation bounds for recurrent Harris processes having general state space

Eva Löcherbach; Dasha Loukianova

ESAIM: Probability and Statistics (2013)

- Volume: 17, page 195-218
- ISSN: 1292-8100

## Access Full Article

top## Abstract

top## How to cite

topLöcherbach, Eva, and Loukianova, Dasha. "Polynomial deviation bounds for recurrent Harris processes having general state space." ESAIM: Probability and Statistics 17 (2013): 195-218. <http://eudml.org/doc/273616>.

@article{Löcherbach2013,

abstract = {Consider a strong Markov process in continuous time, taking values in some Polish state space. Recently, Douc et al. [Stoc. Proc. Appl. 119, (2009) 897–923] introduced verifiable conditions in terms of a supermartingale property implying an explicit control of modulated moments of hitting times. We show how this control can be translated into a control of polynomial moments of abstract regeneration times which are obtained by using the regeneration method of Nummelin, extended to the time-continuous context. As a consequence, if a p-th moment of the regeneration times exists, we obtain non asymptotic deviation bounds of the form\begin\{equation*\} P\_\{\nu \} \left(\left|\frac\{1\}\{t\}\int \_0^tf(X\_s)\{\rm d\}s-\mu (f)\right|\ge \ge \right)\le K(p)\frac\{1\}\{t^\{p- 1\}\}\frac\{1\}\{\ge ^\{2(p-1)\}\}\Vert f\Vert \_\infty ^\{2(p-1)\} ,\quad p \ge 2. \end\{equation*\}P ν 1 t ∫ 0 t f ( X s ) d s − μ ( f ) ≥ ε ≤ K ( p ) 1 t p − 1 1 ε 2 ( p − 1 ) ∥ f ∥ ∞ 2 ( p − 1 ) , p ≥ 2. Here,f is a bounded function and μ is the invariant measure of the process. We give several examples, including elliptic stochastic differential equations and stochastic differential equations driven by a jump noise.},

author = {Löcherbach, Eva, Loukianova, Dasha},

journal = {ESAIM: Probability and Statistics},

keywords = {Harris recurrence; polynomial ergodicity; Nummelin splitting; continuous time Markov processes; drift condition; modulated moment; polynomial deviation bounds},

language = {eng},

pages = {195-218},

publisher = {EDP-Sciences},

title = {Polynomial deviation bounds for recurrent Harris processes having general state space},

url = {http://eudml.org/doc/273616},

volume = {17},

year = {2013},

}

TY - JOUR

AU - Löcherbach, Eva

AU - Loukianova, Dasha

TI - Polynomial deviation bounds for recurrent Harris processes having general state space

JO - ESAIM: Probability and Statistics

PY - 2013

PB - EDP-Sciences

VL - 17

SP - 195

EP - 218

AB - Consider a strong Markov process in continuous time, taking values in some Polish state space. Recently, Douc et al. [Stoc. Proc. Appl. 119, (2009) 897–923] introduced verifiable conditions in terms of a supermartingale property implying an explicit control of modulated moments of hitting times. We show how this control can be translated into a control of polynomial moments of abstract regeneration times which are obtained by using the regeneration method of Nummelin, extended to the time-continuous context. As a consequence, if a p-th moment of the regeneration times exists, we obtain non asymptotic deviation bounds of the form\begin{equation*} P_{\nu } \left(\left|\frac{1}{t}\int _0^tf(X_s){\rm d}s-\mu (f)\right|\ge \ge \right)\le K(p)\frac{1}{t^{p- 1}}\frac{1}{\ge ^{2(p-1)}}\Vert f\Vert _\infty ^{2(p-1)} ,\quad p \ge 2. \end{equation*}P ν 1 t ∫ 0 t f ( X s ) d s − μ ( f ) ≥ ε ≤ K ( p ) 1 t p − 1 1 ε 2 ( p − 1 ) ∥ f ∥ ∞ 2 ( p − 1 ) , p ≥ 2. Here,f is a bounded function and μ is the invariant measure of the process. We give several examples, including elliptic stochastic differential equations and stochastic differential equations driven by a jump noise.

LA - eng

KW - Harris recurrence; polynomial ergodicity; Nummelin splitting; continuous time Markov processes; drift condition; modulated moment; polynomial deviation bounds

UR - http://eudml.org/doc/273616

ER -

## References

top- [1] R. Adamczak, A tail inequality for suprema of unbounded empirical processes with applications to Markov chains. Electron. J. Probab.13 (2008) 1000–1034. Zbl1190.60010MR2424985
- [2] K.B. Athreya and P. Ney, A new approach to the limit theory of recurrent Markov chains. Trans. Amer. Math. Soc.245 (1978) 493–501. Zbl0397.60053MR511425
- [3] P. Bertail and S. Clémençon, Sharp bounds for the tails of functionals of markov chains, Teor. Veroyatnost. i Primenen54 (2009) 609–619. Zbl1211.60028MR2766354
- [4] P. Cattiaux and A. Guillin, Deviation bounds for additive functionals of Markov processes. ESAIM : PS 12 (2008) 12–29. Zbl1183.60011MR2367991
- [5] J.-R. Chazottes, P. Collet, C. Külske and F. Redig, Concentration inequalities for random fields via coupling. Probab. Theory Relat. Fields137 (2007) 201–225. Zbl1111.60070MR2278456
- [6] S. Clémençon, Moment and probability inequalities for sums of bounded additive functionals of regular Markov chains via the Nummelin splitting technique. Stat. Probab. Lett.55 (2001) 227–238. Zbl1078.60508MR1867526
- [7] R. Douc, G. Fort and A. Guillin, Subgeometric rates of convergence of f-ergodic strong Markov processes. Stoch. Proc. Appl.119 (2009) 897–923. Zbl1163.60034MR2499863
- [8] R. Douc, G. Fort, E. Moulines and P. Soulier, Practical drift conditions for subgeometric rates of convergence. Ann. Appl. Probab.14 (2004) 1353–1377. Zbl1082.60062MR2071426
- [9] G. Fort and G.O. Roberts, Subgeometric ergodicity of strong Markov processes. Ann. Appl. Probab.15 (2005) 1565–1589. Zbl1072.60057MR2134115
- [10] A. Guillin, C. Léonard, L. Wu and N. Yao, Transportation-information inequalities for Markov processes. Probab. Theory Relat. Fields144 (2009) 669–695. Zbl1169.60304MR2496446
- [11] A.M. Kulik, Exponential ergodicity of the solutions to SDE’s with a jump noise. Stoch. Proc. Appl.119 (2009) 602–632. Zbl1169.60012MR2494006
- [12] S. Kusuoka and D. Stroock, Applications of the Malliavin calculus. III. J. Fac. Sci., Univ. Tokyo, Sect. I A 34 (1987) 391–442. Zbl0633.60078MR914028
- [13] R. Höpfner and E. Löcherbach, Limit theorems for null recurrent Markov processes. Memoirs AMS 161 (2003). Zbl1018.60074
- [14] P. Lezaud, Chernoff and Berry-Esséen inequalities for Markov processes. ESAIM : PS 5 (2001) 183–201. Zbl0998.60075MR1875670
- [15] E. Löcherbach and D. Loukianova, On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions. Stoch. Proc. Appl.118 (2008) 1301–1321. Zbl1202.60122MR2427041
- [16] E. Löcherbach, D. Loukianova and O. Loukianov, Deviation bounds in ergodic theorem for positively recurrent one-dimensional diffusions and integrability of hitting times. Ann. Inst. Henri Poincaré47 (2011) 425–449. Zbl1220.60045
- [17] E. Nummelin, A splitting technique for Harris recurrent Markov chains. Z. Wahrscheinlichkeitstheorie Verw. Geb.43 (1978) 309–318. Zbl0364.60104MR501353
- [18] S. Pal, Concentration for multidimensional diffusions and their boundary local times. To appear in Probab. Theory Relat. Fields (2011), DOI 10.1007/s00440-011-0368-1 Zbl1259.60091MR2981423
- [19] D. Revuz, Markov chains, Revised edition. Amsterdam, North Holland (1984). Zbl0539.60073MR758799
- [20] E. Rio, Théorie asymptotique des processus aléatoires faiblement dépendants. Springer. Math. Appl. 31 (2000). Zbl0944.60008MR2117923
- [21] T. Simon, Support theorem for jump processes. Stoch. Proc. Appl.89 (2000) 1–30. Zbl1045.60063MR1775224
- [22] A.Yu. Veretennikov, On polynomial mixing bounds for stochastic differential equations. Stoch. Proc. Appl.70 (1997) 115–127. Zbl0911.60042MR1472961
- [23] A.Yu. Veretennikov and S.A. Klokov, On subexponential mixing rate for Markov processes. Teor. Veroyatnost. i Primenen49 (2004) 21–35. Zbl1090.60067MR2141328
- [24] L. Wu, A deviation inequality for non-reversible Markov process, Ann. Inst. Henri Poincaré36 (2000) 435–445. Zbl0972.60003MR1785390

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.