A deviation inequality for non-reversible Markov processes
Annales de l'I.H.P. Probabilités et statistiques (2000)
- Volume: 36, Issue: 4, page 435-445
- ISSN: 0246-0203
Access Full Article
topHow to cite
topWu, Liming. "A deviation inequality for non-reversible Markov processes." Annales de l'I.H.P. Probabilités et statistiques 36.4 (2000): 435-445. <http://eudml.org/doc/77667>.
@article{Wu2000,
author = {Wu, Liming},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {deviation inequality; Dirichlet forms; logarithmic Sobolev inequality},
language = {eng},
number = {4},
pages = {435-445},
publisher = {Gauthier-Villars},
title = {A deviation inequality for non-reversible Markov processes},
url = {http://eudml.org/doc/77667},
volume = {36},
year = {2000},
}
TY - JOUR
AU - Wu, Liming
TI - A deviation inequality for non-reversible Markov processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2000
PB - Gauthier-Villars
VL - 36
IS - 4
SP - 435
EP - 445
LA - eng
KW - deviation inequality; Dirichlet forms; logarithmic Sobolev inequality
UR - http://eudml.org/doc/77667
ER -
References
top- [1] Ben Arous G., Deuschel J.D., The rate function of hypoelliptic diffusions, Comm. Pure Appl. Math.XLVII (6) (1994) 843-860. Zbl0811.58065MR1280991
- [2] Bryc W., Smolenski W., On the convergence of averages of mixing sequences, J. Theoret. Probab.6 (3) (1993) 473-484. Zbl0776.60035MR1230342
- [3] Capitaine M., Hsu E.P., Ledoux M., Martingale representation and a simple proof of logarithmic Sobolev inequality on path spaces, Elect. Comm. Probab.2 (7) (1997). Zbl0890.60045MR1484557
- [4] Deuschel J.D., Stroock D.W., Large deviations, Pure andAppl. Math.137 (1989). Zbl0705.60029
- [5] Kato T., Perturbation Theory for Linear Operators, 2nd ed., Springer, Berlin, 1984; (2nd corrected printing). Zbl0531.47014MR1335452
- [6] Ledoux M., Concentration of measure and logarithmic Sobolev inequalities, in: Séminaire de Probab. XXXIII, Lecture Notes in Math., Vol. 1709, Springer, 1999, pp. 120-216. Zbl0957.60016MR1767995
- [7] Wu L.M., Feynman-Kac semigroups, ground state diffusions and large deviations, J. Funct. Anal.123 (1) (1994) 202-231. Zbl0798.60067MR1279300
- [8] Wu L.M., An introduction to large deviations, in: Yan J.A., Peng S., Fang S., Wu L. (Eds.), Several Topics in Stochastic Analysis, Academic Press of China, Beijing, 1997, pp. 225-336; (in chinese).
- [9] Yosida K., Functional Analysis, 3rd edn., Springer, 1971. Zbl0217.16001
Citations in EuDML Documents
top- D. Erhard, F. den Hollander, G. Maillard, The parabolic Anderson model in a dynamic random environment: Basic properties of the quenched Lyapunov exponent
- Eva Löcherbach, Dasha Loukianova, Polynomial deviation bounds for recurrent Harris processes having general state space
- Patrick Cattiaux, Arnaud Guillin, Deviation bounds for additive functionals of Markov processes
- Patrick Cattiaux, Arnaud Guillin, deviation bounds for additive functionals of markov processes
- Eva Löcherbach, Dasha Loukianova, Oleg Loukianov, Polynomial bounds in the Ergodic theorem for one-dimensional diffusions and integrability of hitting times
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.