A deviation inequality for non-reversible Markov processes

Liming Wu

Annales de l'I.H.P. Probabilités et statistiques (2000)

  • Volume: 36, Issue: 4, page 435-445
  • ISSN: 0246-0203

How to cite

top

Wu, Liming. "A deviation inequality for non-reversible Markov processes." Annales de l'I.H.P. Probabilités et statistiques 36.4 (2000): 435-445. <http://eudml.org/doc/77667>.

@article{Wu2000,
author = {Wu, Liming},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {deviation inequality; Dirichlet forms; logarithmic Sobolev inequality},
language = {eng},
number = {4},
pages = {435-445},
publisher = {Gauthier-Villars},
title = {A deviation inequality for non-reversible Markov processes},
url = {http://eudml.org/doc/77667},
volume = {36},
year = {2000},
}

TY - JOUR
AU - Wu, Liming
TI - A deviation inequality for non-reversible Markov processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2000
PB - Gauthier-Villars
VL - 36
IS - 4
SP - 435
EP - 445
LA - eng
KW - deviation inequality; Dirichlet forms; logarithmic Sobolev inequality
UR - http://eudml.org/doc/77667
ER -

References

top
  1. [1] Ben Arous G., Deuschel J.D., The rate function of hypoelliptic diffusions, Comm. Pure Appl. Math.XLVII (6) (1994) 843-860. Zbl0811.58065MR1280991
  2. [2] Bryc W., Smolenski W., On the convergence of averages of mixing sequences, J. Theoret. Probab.6 (3) (1993) 473-484. Zbl0776.60035MR1230342
  3. [3] Capitaine M., Hsu E.P., Ledoux M., Martingale representation and a simple proof of logarithmic Sobolev inequality on path spaces, Elect. Comm. Probab.2 (7) (1997). Zbl0890.60045MR1484557
  4. [4] Deuschel J.D., Stroock D.W., Large deviations, Pure andAppl. Math.137 (1989). Zbl0705.60029
  5. [5] Kato T., Perturbation Theory for Linear Operators, 2nd ed., Springer, Berlin, 1984; (2nd corrected printing). Zbl0531.47014MR1335452
  6. [6] Ledoux M., Concentration of measure and logarithmic Sobolev inequalities, in: Séminaire de Probab. XXXIII, Lecture Notes in Math., Vol. 1709, Springer, 1999, pp. 120-216. Zbl0957.60016MR1767995
  7. [7] Wu L.M., Feynman-Kac semigroups, ground state diffusions and large deviations, J. Funct. Anal.123 (1) (1994) 202-231. Zbl0798.60067MR1279300
  8. [8] Wu L.M., An introduction to large deviations, in: Yan J.A., Peng S., Fang S., Wu L. (Eds.), Several Topics in Stochastic Analysis, Academic Press of China, Beijing, 1997, pp. 225-336; (in chinese). 
  9. [9] Yosida K., Functional Analysis, 3rd edn., Springer, 1971. Zbl0217.16001

Citations in EuDML Documents

top
  1. D. Erhard, F. den Hollander, G. Maillard, The parabolic Anderson model in a dynamic random environment: Basic properties of the quenched Lyapunov exponent
  2. Eva Löcherbach, Dasha Loukianova, Polynomial deviation bounds for recurrent Harris processes having general state space
  3. Patrick Cattiaux, Arnaud Guillin, Deviation bounds for additive functionals of Markov processes
  4. Patrick Cattiaux, Arnaud Guillin, deviation bounds for additive functionals of markov processes
  5. Eva Löcherbach, Dasha Loukianova, Oleg Loukianov, Polynomial bounds in the Ergodic theorem for one-dimensional diffusions and integrability of hitting times

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.