Meeting time of independent random walks in random environment
ESAIM: Probability and Statistics (2013)
- Volume: 17, page 257-292
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] V. Belitsky, P. Ferrari, M. Menshikov and S. Popov, A mixture of the exclusion process and the voter model. Bernoulli7 (2001) 119–144. Zbl0978.60105MR1811747
- [2] W. Böhm and S.G. Mohanty, On the Karlin–McGregor theorem and applications. Ann. Appl. Probab.7 (1997) 314–325. Zbl0884.60010MR1442315
- [3] F. Comets and S.Yu. Popov, Limit law for transition probabilities and moderate deviations for Sinai’s random walk in random environment. Probab. Theory Relat. Fields126 (2003) 571–609. Zbl1027.60091MR2001198
- [4] F. Comets and S.Yu. Popov, A note on quenched moderate deviations for Sinai’s random walk in random environment. ESAIM : PS 8 (2004) 56–65. Zbl1171.60396MR2085605
- [5] F. Comets, M.V. Menshikov and S.Yu. Popov, Lyapunov functions for random walks and strings in random environment. Ann. Probab.26 (1998) 1433–1445. Zbl0938.60065MR1675023
- [6] A. Dembo, N. Gantert, Y. Peres and Z. Shi, Valleys and the maximal local time for random walk in random environment. Probab. Theory Relat. Fields137 (2007) 443–473. Zbl1106.60082MR2278464
- [7] N. Enriquez, C. Sabot and O. Zindy, Aging and quenched localization one-dimensional random walks in random environment in the bub-ballistic regime. Bulletin de la S.M.F.137 (2009) 423–452. Zbl1186.60108MR2574090
- [8] A. Fribergh, N. Gantert and S.Yu. Popov, On slowdown and speedup of transient random walks in random environment. Probab. Theory Relat. Fields147 (2010) 43–88. Zbl1193.60122MR2594347
- [9] C. Gallesco, On the moments of the meeting time of independent random walks in random environment. arXiv:0903.4697 (2009). Zbl1292.60098MR3021319
- [10] N. Gantert, Y. Peres and Z. Shi, The infinite valley for a recurrent random walk in random environment. Ann. Inst. Henri Poincaré46 (2010) 525–536. Zbl1201.60096MR2667708
- [11] A. Greven and F. den Hollander, Large deviations for a random walk in random environment. Ann. Probab. 22 (1994) 1381 − 1428. Zbl0820.60054MR1303649
- [12] Y. Hu and Z. Shi, Moderate deviations for diffusions with Brownian potentials. Ann. Probab.32 (2004) 3191–3220. Zbl1066.60096MR2094443
- [13] B. Hughes, Random Walks and Random Environments. The Clarendon Press, Oxford University Press, New York. Random Environments 2 (1996). Zbl0925.60076
- [14] H. Kesten, M.V. Kozlov and F. Spitzer, A limit law for random walk in a random environment. Compos. Math.30 (1975) 145–168. Zbl0388.60069MR380998
- [15] J. Komlós, P. Major and G. Tusnády, An approximation of partial sums of independent RV’s and the sample DF. I. Z. Wahrscheinlichkeitstheor. Verw. Gebiete32 (1975) 111–131. Zbl0308.60029MR375412
- [16] L. Saloff-Coste, Lectures on Finite Markov Chains. Lectures on probability theory and statistics, Saint-Flour, 1996, Springer, Berlin. Lect. Notes Math. 1665 (1997) 301–413. Zbl0885.60061MR1490046
- [17] Z. Shi, Sinai’s Walk via Stochastic Calculus, in Milieux Aléatoires Panoramas et Synthèses 12, edited by F. Comets and E. Pardoux. Société Mathématique de France, Paris (2001). Zbl1031.60088MR2226845
- [18] Ya.G. Sinai, The limiting behavior of one-dimensional random walk in random medium. Theory Probab. Appl.27 (1982) 256–268. Zbl0505.60086MR657919
- [19] F. Solomon, Random walks in a random environment. Ann. Probab.3 (1975) 1–31. Zbl0305.60029MR362503
- [20] O. Zeitouni, Lecture Notes on Random Walks in Random Environment given at the 31st Probability Summer School in Saint-Flour, Springer. Lect. Notes Math.1837 (2004) 191–312. Zbl1060.60103MR2071631