Carthaginian enlargement of filtrations

Giorgia Callegaro; Monique Jeanblanc; Behnaz Zargari

ESAIM: Probability and Statistics (2013)

  • Volume: 17, page 550-566
  • ISSN: 1292-8100

Abstract

top
This work is concerned with the theory of initial and progressive enlargements of a reference filtration 𝔽 F with a random timeτ. We provide, under an equivalence assumption, slightly stronger than the absolute continuity assumption of Jacod, alternative proofs to results concerning canonical decomposition of an 𝔽 F -martingale in the enlarged filtrations. Also, we address martingales’ characterization in the enlarged filtrations in terms of martingales in the reference filtration, as well as predictable representation theorems in the enlarged filtrations.

How to cite

top

Callegaro, Giorgia, Jeanblanc, Monique, and Zargari, Behnaz. "Carthaginian enlargement of filtrations." ESAIM: Probability and Statistics 17 (2013): 550-566. <http://eudml.org/doc/273629>.

@article{Callegaro2013,
abstract = {This work is concerned with the theory of initial and progressive enlargements of a reference filtration $\mathbb \{F\}$ F with a random timeτ. We provide, under an equivalence assumption, slightly stronger than the absolute continuity assumption of Jacod, alternative proofs to results concerning canonical decomposition of an $\mathbb \{F\}$ F -martingale in the enlarged filtrations. Also, we address martingales’ characterization in the enlarged filtrations in terms of martingales in the reference filtration, as well as predictable representation theorems in the enlarged filtrations.},
author = {Callegaro, Giorgia, Jeanblanc, Monique, Zargari, Behnaz},
journal = {ESAIM: Probability and Statistics},
keywords = {initial and progressive enlargements of filtrations; predictable projection; canonical decomposition of semimartingales; predictable representation theorem; initial and progressive enlargement of filtrations; predictable representation; change of probability measure},
language = {eng},
pages = {550-566},
publisher = {EDP-Sciences},
title = {Carthaginian enlargement of filtrations},
url = {http://eudml.org/doc/273629},
volume = {17},
year = {2013},
}

TY - JOUR
AU - Callegaro, Giorgia
AU - Jeanblanc, Monique
AU - Zargari, Behnaz
TI - Carthaginian enlargement of filtrations
JO - ESAIM: Probability and Statistics
PY - 2013
PB - EDP-Sciences
VL - 17
SP - 550
EP - 566
AB - This work is concerned with the theory of initial and progressive enlargements of a reference filtration $\mathbb {F}$ F with a random timeτ. We provide, under an equivalence assumption, slightly stronger than the absolute continuity assumption of Jacod, alternative proofs to results concerning canonical decomposition of an $\mathbb {F}$ F -martingale in the enlarged filtrations. Also, we address martingales’ characterization in the enlarged filtrations in terms of martingales in the reference filtration, as well as predictable representation theorems in the enlarged filtrations.
LA - eng
KW - initial and progressive enlargements of filtrations; predictable projection; canonical decomposition of semimartingales; predictable representation theorem; initial and progressive enlargement of filtrations; predictable representation; change of probability measure
UR - http://eudml.org/doc/273629
ER -

References

top
  1. [1] J. Amendinger, Initial Enlargement of Filtrations and Additional Information in Financial Markets. Ph.D. thesis, Technischen Universität Berlin (1999). Zbl0936.91022
  2. [2] S. Ankirchner, S. Dereich and P. Imkeller, Elargement of filtrations, continuous Girsanov-type embeddings, Séminaire de probabilités XL (2007) 389–410. Zbl1155.60017MR2409018
  3. [3] J. Azéma, Quelques applications de la théorie générale des processus, Invent. Math. 18 (1972). 293–336. Zbl0268.60068MR326848
  4. [4] M.T. Barlow, Study of filtration expanded to include an honest time. Z. Wahr. Verw. Gebiete44 (1978) 307–323. Zbl0369.60047MR509204
  5. [5] T.R. Bielecki, M. Jeanblanc and M. Rutkowski, Credit Risk Modeling. CSFI Lect. Note Series. Osaka University Press (2009). Zbl1107.91351
  6. [6] P. Brémaud, Point Processes and Queues: Martingale Dynamics. Springer-Verlag (1981). Zbl0478.60004MR636252
  7. [7] C.S. Chou and P.-A. Meyer, Sur la représentation des martingales comme intégrales stochastiques dans les processus ponctuels. Séminaire de probabilités IX (1975) 226–236. Zbl0326.60065MR436310
  8. [8] C. Dellacherie and P.-A. Meyer, Probabilités et Potentiel – Chapitres XXVII à XXIV, Processus de Markov. Hermann, Paris (1992). Zbl0138.10402
  9. [9] N. El Karoui, M. Jeanblanc and Y. Jiao, What happens after a default: the conditional density approach. Stoch. Proc. Appl.120 (2010) 1011–1032. Zbl1194.91187MR2639736
  10. [10] H. Föllmer and P. Imkeller, Anticipation cancelled by a Girsanov transformation: a paradox on Wiener space. Ann. Inst. Henri Poincaré29 (1993) 569–586. Zbl0796.60082MR1251141
  11. [11] D. Gasbarra, E. Valkeila and L. Vostrikova, Enlargement of filtration and additional information in pricing models: Bayesian approach, in From Stochastic Calculus to Mathematical Finance, edited by Y. Kabanov, R. Liptser and J. Stoyanov. Springer-Verlag (2006) 257–285. Zbl1101.62101MR2233544
  12. [12] A. Grorud and M. Pontier, Insider trading in a continuous time market model. Int. J. Theor. Appl. Finance1 (1998) 331–347. Zbl0909.90023
  13. [13] A. Grorud and M. Pontier, Asymmetrical information and incomplete markets. Int. J. Theor. Appl. Finance4 (2001) 285–302. Zbl1154.91542MR1831271
  14. [14] Sh. He, J. Wang and J. Yan, Semimartingale theory and stochastic calculus. CRC Press (1992). Zbl0781.60002MR1219534
  15. [15] J. Jacod, Grossissement initial, hypothèse (H′) et théorème de Girsanov, Lect. Notes Math., vol. 1118. Springer-Verlag (1985) 15–35. Zbl0568.60049
  16. [16] M. Jeanblanc and Y. Le Cam, Progressive enlargement of filtrations with initial times. Stoch. Proc. Appl.119 (2009) 2523–2543. Zbl1175.60041MR2532211
  17. [17] M. Jeanblanc and Y. Le Cam, Immersion Property and Credit Risk Modelling, in Optimality and Risk – Modern Trends in Mathematical Finance, edited by F. Delbaen, M. Rásonyi and C. Stricker. Springer (2010) 99–132. Zbl1195.60066MR2648600
  18. [18] M. Jeanblanc, M. Yor and M. Chesney, Mathematical Methods in Financial Markets. Springer (2009). Zbl1205.91003
  19. [19] T. Jeulin, Semimartingales et grossissement d’une filtration, Lect. Notes Math., vol. 833. Springer-Verlag (1980). Zbl0444.60002MR604176
  20. [20] Y. Kchia, M. Larsson and P. Protter, Linking progressive and initial filtration expansions, Working paper. Zbl1317.60047
  21. [21] S. Kusuoka, A remark on default risk models, Adv. Math. Econ.1 (1999) 69–82. Zbl0939.60023MR1722700
  22. [22] Sh. Song, Grossissement de filtration et problèmes connexes. Ph.D. thesis, Université Paris VI (1987). 
  23. [23] C. Stricker, Quasi-martingales, martingales locales et filtrations naturelles. Zeitschrift fur Wahr39 (1977) 55–63. Zbl0362.60069MR471072
  24. [24] C. Stricker and M. Yor, Calcul stochastique dépendant d’un paramètre. Zeitschrift fur Wahr45 (1978) 109–133. Zbl0388.60056MR510530
  25. [25] M. Yor, Grossissement de filtrations et absolue continuité de noyaux, Lect. Notes Math., vol. 1118. Springer-Verlag (1985) 7–14. Zbl0576.60038MR884713

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.