Carthaginian enlargement of filtrations
Giorgia Callegaro; Monique Jeanblanc; Behnaz Zargari
ESAIM: Probability and Statistics (2013)
- Volume: 17, page 550-566
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topCallegaro, Giorgia, Jeanblanc, Monique, and Zargari, Behnaz. "Carthaginian enlargement of filtrations." ESAIM: Probability and Statistics 17 (2013): 550-566. <http://eudml.org/doc/273629>.
@article{Callegaro2013,
abstract = {This work is concerned with the theory of initial and progressive enlargements of a reference filtration $\mathbb \{F\}$ F with a random timeτ. We provide, under an equivalence assumption, slightly stronger than the absolute continuity assumption of Jacod, alternative proofs to results concerning canonical decomposition of an $\mathbb \{F\}$ F -martingale in the enlarged filtrations. Also, we address martingales’ characterization in the enlarged filtrations in terms of martingales in the reference filtration, as well as predictable representation theorems in the enlarged filtrations.},
author = {Callegaro, Giorgia, Jeanblanc, Monique, Zargari, Behnaz},
journal = {ESAIM: Probability and Statistics},
keywords = {initial and progressive enlargements of filtrations; predictable projection; canonical decomposition of semimartingales; predictable representation theorem; initial and progressive enlargement of filtrations; predictable representation; change of probability measure},
language = {eng},
pages = {550-566},
publisher = {EDP-Sciences},
title = {Carthaginian enlargement of filtrations},
url = {http://eudml.org/doc/273629},
volume = {17},
year = {2013},
}
TY - JOUR
AU - Callegaro, Giorgia
AU - Jeanblanc, Monique
AU - Zargari, Behnaz
TI - Carthaginian enlargement of filtrations
JO - ESAIM: Probability and Statistics
PY - 2013
PB - EDP-Sciences
VL - 17
SP - 550
EP - 566
AB - This work is concerned with the theory of initial and progressive enlargements of a reference filtration $\mathbb {F}$ F with a random timeτ. We provide, under an equivalence assumption, slightly stronger than the absolute continuity assumption of Jacod, alternative proofs to results concerning canonical decomposition of an $\mathbb {F}$ F -martingale in the enlarged filtrations. Also, we address martingales’ characterization in the enlarged filtrations in terms of martingales in the reference filtration, as well as predictable representation theorems in the enlarged filtrations.
LA - eng
KW - initial and progressive enlargements of filtrations; predictable projection; canonical decomposition of semimartingales; predictable representation theorem; initial and progressive enlargement of filtrations; predictable representation; change of probability measure
UR - http://eudml.org/doc/273629
ER -
References
top- [1] J. Amendinger, Initial Enlargement of Filtrations and Additional Information in Financial Markets. Ph.D. thesis, Technischen Universität Berlin (1999). Zbl0936.91022
- [2] S. Ankirchner, S. Dereich and P. Imkeller, Elargement of filtrations, continuous Girsanov-type embeddings, Séminaire de probabilités XL (2007) 389–410. Zbl1155.60017MR2409018
- [3] J. Azéma, Quelques applications de la théorie générale des processus, Invent. Math. 18 (1972). 293–336. Zbl0268.60068MR326848
- [4] M.T. Barlow, Study of filtration expanded to include an honest time. Z. Wahr. Verw. Gebiete44 (1978) 307–323. Zbl0369.60047MR509204
- [5] T.R. Bielecki, M. Jeanblanc and M. Rutkowski, Credit Risk Modeling. CSFI Lect. Note Series. Osaka University Press (2009). Zbl1107.91351
- [6] P. Brémaud, Point Processes and Queues: Martingale Dynamics. Springer-Verlag (1981). Zbl0478.60004MR636252
- [7] C.S. Chou and P.-A. Meyer, Sur la représentation des martingales comme intégrales stochastiques dans les processus ponctuels. Séminaire de probabilités IX (1975) 226–236. Zbl0326.60065MR436310
- [8] C. Dellacherie and P.-A. Meyer, Probabilités et Potentiel – Chapitres XXVII à XXIV, Processus de Markov. Hermann, Paris (1992). Zbl0138.10402
- [9] N. El Karoui, M. Jeanblanc and Y. Jiao, What happens after a default: the conditional density approach. Stoch. Proc. Appl.120 (2010) 1011–1032. Zbl1194.91187MR2639736
- [10] H. Föllmer and P. Imkeller, Anticipation cancelled by a Girsanov transformation: a paradox on Wiener space. Ann. Inst. Henri Poincaré29 (1993) 569–586. Zbl0796.60082MR1251141
- [11] D. Gasbarra, E. Valkeila and L. Vostrikova, Enlargement of filtration and additional information in pricing models: Bayesian approach, in From Stochastic Calculus to Mathematical Finance, edited by Y. Kabanov, R. Liptser and J. Stoyanov. Springer-Verlag (2006) 257–285. Zbl1101.62101MR2233544
- [12] A. Grorud and M. Pontier, Insider trading in a continuous time market model. Int. J. Theor. Appl. Finance1 (1998) 331–347. Zbl0909.90023
- [13] A. Grorud and M. Pontier, Asymmetrical information and incomplete markets. Int. J. Theor. Appl. Finance4 (2001) 285–302. Zbl1154.91542MR1831271
- [14] Sh. He, J. Wang and J. Yan, Semimartingale theory and stochastic calculus. CRC Press (1992). Zbl0781.60002MR1219534
- [15] J. Jacod, Grossissement initial, hypothèse (H′) et théorème de Girsanov, Lect. Notes Math., vol. 1118. Springer-Verlag (1985) 15–35. Zbl0568.60049
- [16] M. Jeanblanc and Y. Le Cam, Progressive enlargement of filtrations with initial times. Stoch. Proc. Appl.119 (2009) 2523–2543. Zbl1175.60041MR2532211
- [17] M. Jeanblanc and Y. Le Cam, Immersion Property and Credit Risk Modelling, in Optimality and Risk – Modern Trends in Mathematical Finance, edited by F. Delbaen, M. Rásonyi and C. Stricker. Springer (2010) 99–132. Zbl1195.60066MR2648600
- [18] M. Jeanblanc, M. Yor and M. Chesney, Mathematical Methods in Financial Markets. Springer (2009). Zbl1205.91003
- [19] T. Jeulin, Semimartingales et grossissement d’une filtration, Lect. Notes Math., vol. 833. Springer-Verlag (1980). Zbl0444.60002MR604176
- [20] Y. Kchia, M. Larsson and P. Protter, Linking progressive and initial filtration expansions, Working paper. Zbl1317.60047
- [21] S. Kusuoka, A remark on default risk models, Adv. Math. Econ.1 (1999) 69–82. Zbl0939.60023MR1722700
- [22] Sh. Song, Grossissement de filtration et problèmes connexes. Ph.D. thesis, Université Paris VI (1987).
- [23] C. Stricker, Quasi-martingales, martingales locales et filtrations naturelles. Zeitschrift fur Wahr39 (1977) 55–63. Zbl0362.60069MR471072
- [24] C. Stricker and M. Yor, Calcul stochastique dépendant d’un paramètre. Zeitschrift fur Wahr45 (1978) 109–133. Zbl0388.60056MR510530
- [25] M. Yor, Grossissement de filtrations et absolue continuité de noyaux, Lect. Notes Math., vol. 1118. Springer-Verlag (1985) 7–14. Zbl0576.60038MR884713
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.