Sur l’évaluation de l’erreur d’interpolation de Lagrange dans un ouvert de n

R. Arcangeli; J. L. Gout

Publications mathématiques et informatique de Rennes (1976)

  • Volume: 10, Issue: S5, page 1-15

How to cite

top

Arcangeli, R., and Gout, J. L.. "Sur l’évaluation de l’erreur d’interpolation de Lagrange dans un ouvert de $\mathbb {R}^n$." Publications mathématiques et informatique de Rennes 10.S5 (1976): 1-15. <http://eudml.org/doc/273786>.

@article{Arcangeli1976,
author = {Arcangeli, R., Gout, J. L.},
journal = {Publications mathématiques et informatique de Rennes},
language = {fre},
number = {S5},
pages = {1-15},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {Sur l’évaluation de l’erreur d’interpolation de Lagrange dans un ouvert de $\mathbb \{R\}^n$},
url = {http://eudml.org/doc/273786},
volume = {10},
year = {1976},
}

TY - JOUR
AU - Arcangeli, R.
AU - Gout, J. L.
TI - Sur l’évaluation de l’erreur d’interpolation de Lagrange dans un ouvert de $\mathbb {R}^n$
JO - Publications mathématiques et informatique de Rennes
PY - 1976
PB - Département de Mathématiques et Informatique, Université de Rennes
VL - 10
IS - S5
SP - 1
EP - 15
LA - fre
UR - http://eudml.org/doc/273786
ER -

References

top
  1. [1] Barnhill R.E. et Whiteman J.R., Error Analysis of Finite Element Methods with Triangles for Elliptic Boundary Value Problems, The mathematics of Finite Elements and Applications (J.R. Whitemen, ed.), 83-112, Acad. Press (1973). Zbl0284.65087
  2. [2] Bramble J.H. et Hilbert S.R., Estimation of Linear Functionals on Sobolev Spaces with Application to Fourier Transforms and Spline Interpolation, SIAM J . Numer. Anal.7, 112-124 (1970). Zbl0201.07803MR263214
  3. [3] Bramble J.H. et Hilebert S.R., Bounds for a Class of Linear Functionals with Applications to Hermite Interpolation, Numer. Math.16, 362-369 (1971). Zbl0214.41405MR290524
  4. [4] Ciarlet P.G.et Raviart P.A., General Lagrange and Hermite Interpolation in Rn with Applications to Finite Element Methods, Arch. Rat. Mech. Anal.46, 177-199 (1972). Zbl0243.41004MR336957
  5. [5] Ciarlet P.G. et Raviart P.A., Interpolation Theory over Curved Elements with Applications to Finite Element Methods, Comp. Meth.. Appl. Mech. Engin.1, 217-249 (1972). Zbl0261.65079MR375801
  6. [6] Ciarlet P.G. et Wagschal C., Multipoint Taylor Formulas and Applications to Finite Element Method, Numer. Math.17, 84-100 (1971). Zbl0199.50104MR287666
  7. [7] Chenin P., Thèse 3ème cycle, Grenoble (1974). 
  8. [8] Coatmelexc C., Approximation et interpolation des fonctions différentiables de plusieurs variables, Ann. Sc. Ecole Norm. Sup. (3) 83, 271-341 (1966). Zbl0155.10902MR232143
  9. [9] Descloux J., Méthode des éléments finis, Ecole polytechnique fédérale de Lausanne (1973). Zbl0331.65074
  10. [10] Meinguet J., Realistic Estimates for Generic Constants in Multivariate Pointwise Approximation, Topics in Numerical AnalysisII, J.J.H. Miller ed. Acad. Press. (1975). Zbl0346.65010MR422972
  11. [11] Necas J., Les méthodes directes en théorie des équations elliptiques, Masson (1967). Zbl1225.35003
  12. [12] Raviart P.A., Méthodes des éléments rédigé par J.M.. Thomas, D.E.A. Analyse Numérique,Paris VI (1971-1972). 
  13. [13] Strang G., Approximation in the Finite Element Method, Numer. Math.19, 81-98 (1972). Zbl0221.65174MR305547
  14. [14] Stroud A.H., Approximate Calculation of Multiple Integrals, Prentice Hall (1971). Zbl0379.65013MR327006
  15. [15] Zienkiewicz O.C., La méthode des éléments finis, Ediscience, Paris (1973). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.