Classification of Nash manifolds

Masahiro Shiota

Annales de l'institut Fourier (1983)

  • Volume: 33, Issue: 3, page 209-232
  • ISSN: 0373-0956

Abstract

top
A semi-algebraic analytic manifold and a semi-algebraic analytic map are called a Nash manifold and a Nash map respectively. We clarify the category of Nash manifolds and Nash maps.

How to cite

top

Shiota, Masahiro. "Classification of Nash manifolds." Annales de l'institut Fourier 33.3 (1983): 209-232. <http://eudml.org/doc/74597>.

@article{Shiota1983,
abstract = {A semi-algebraic analytic manifold and a semi-algebraic analytic map are called a Nash manifold and a Nash map respectively. We clarify the category of Nash manifolds and Nash maps.},
author = {Shiota, Masahiro},
journal = {Annales de l'institut Fourier},
keywords = {Nash manifolds; semi-algebraic analytic manifold; Euclidean space; Nash map; Nash diffeomorphic},
language = {eng},
number = {3},
pages = {209-232},
publisher = {Association des Annales de l'Institut Fourier},
title = {Classification of Nash manifolds},
url = {http://eudml.org/doc/74597},
volume = {33},
year = {1983},
}

TY - JOUR
AU - Shiota, Masahiro
TI - Classification of Nash manifolds
JO - Annales de l'institut Fourier
PY - 1983
PB - Association des Annales de l'Institut Fourier
VL - 33
IS - 3
SP - 209
EP - 232
AB - A semi-algebraic analytic manifold and a semi-algebraic analytic map are called a Nash manifold and a Nash map respectively. We clarify the category of Nash manifolds and Nash maps.
LA - eng
KW - Nash manifolds; semi-algebraic analytic manifold; Euclidean space; Nash map; Nash diffeomorphic
UR - http://eudml.org/doc/74597
ER -

References

top
  1. [1] R. BENEDETTI, and A. TOGNOLI, On real algebraic vector bundles, Bull. Sc. Math., 104 (1980), 89-112. Zbl0421.58001MR81e:14009
  2. [2] H. HIRONAKA, Resolution of singularities of an algebraic variety over a field of characteristic zero, I-II, Ann. Math., 79 (1964), 109-326. Zbl0122.38603MR33 #7333
  3. [3] S. LOJASIEWICZ, Ensemble semi-analytique, IHES, 1965. 
  4. [4] J.W. MILNOR, Two complexes which are homeomorphic but combinatorially distinct, Ann. Math., 74 (1961), 575-590. Zbl0102.38103MR24 #A2961
  5. [5] J.W. MILNOR, Lectures on the h-cobordism theorem, Princeton, Princeton Univ. Press, 1965. Zbl0161.20302MR32 #8352
  6. [6] T. MOSTOWSKI, Some properties of the ring of Nash functions, Ann. Scuola Norm. Sup. Pisa, III 2 (1976), 245-266. Zbl0335.14001MR54 #307
  7. [7] R. PALAIS, Equivariant real algebraic differential topology, Part I, Smoothness categories and Nash manifolds, Notes Brandeis Univ., 1972. Zbl0281.57015
  8. [8] J. J. RISLER, Sur l'anneau des fonctions de Nash globales, C.R.A.S., Paris, 276 (1973), 1513-1516. Zbl0256.13014MR47 #7057
  9. [9] M. SHIOTA, On the unique factorization property of the ring of Nash functions, Publ. RIMS, Kyoto Univ., 17 (1981), 363-369. Zbl0503.58001MR83a:58001
  10. [10] M. SHIOTA, Equivalence of differentiable mappings and analytic mappings, Publ. Math. IHES, 54 (1981), 237-322. Zbl0516.58012MR84k:58039
  11. [11] M. SHIOTA, Equivalence of differentiable functions, rational functions and polynomials, Ann. Inst. Fourier, 32, 4 (1982), 167-204. Zbl0466.58006MR84i:58023
  12. [12] M. SHIOTA, Sur la factorialité de l'anneau des fonctions lisses rationnelles, C.R.A.S., Paris, 292 (1981), 67-70. Zbl0489.14013MR82b:14009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.