Théorie des nœuds et calcul formel

Jean-Philippe Rolin

Publications mathématiques et informatique de Rennes (1989)

  • Volume: 1989, Issue: 4, page 239-260

How to cite

top

Rolin, Jean-Philippe. "Théorie des nœuds et calcul formel." Publications mathématiques et informatique de Rennes 1989.4 (1989): 239-260. <http://eudml.org/doc/273942>.

@article{Rolin1989,
author = {Rolin, Jean-Philippe},
journal = {Publications mathématiques et informatique de Rennes},
keywords = {Alexander polynomial; Jones polynomial; Milnor invariant; Seifert matrix; PROLOG programming language},
language = {fre},
number = {4},
pages = {239-260},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {Théorie des nœuds et calcul formel},
url = {http://eudml.org/doc/273942},
volume = {1989},
year = {1989},
}

TY - JOUR
AU - Rolin, Jean-Philippe
TI - Théorie des nœuds et calcul formel
JO - Publications mathématiques et informatique de Rennes
PY - 1989
PB - Département de Mathématiques et Informatique, Université de Rennes
VL - 1989
IS - 4
SP - 239
EP - 260
LA - fre
KW - Alexander polynomial; Jones polynomial; Milnor invariant; Seifert matrix; PROLOG programming language
UR - http://eudml.org/doc/273942
ER -

References

top
  1. [Al] Alexander J.W.: Topological invariants of knots and links. Trans. Amer. Math. Soc, 30 (1968). JFM54.0603.03
  2. [Au] Aumann R.J.: Asphericity of alternating knots. Ann. of Math., (2) 64 (1956). Zbl0078.16403MR96236
  3. [Bi] Birman J.S.:Braids, links and mapping class groups. Ann. Math. Studies 82 (1974). Zbl0305.57013MR375281
  4. [B-Z] Burde G. - Zieschang H.: Knots. Walter de Gruyter, Berlin. New York (1985). Zbl1009.57003MR808776
  5. [Co] Conway J.H.: An enumeration of knots and links and some of their algebraic properties. Computational problems in Abstract Algebra, Proc. Conf.Oxford (1967). Zbl0202.54703
  6. [Cr] Crowell R.H.: Genus of alternating link types. Ann. of Math., 69 (1959). Zbl0111.35803MR99665
  7. [De] Delahaye J.L.: Outils logiques pour l'intelligence artificielle. Editions Eyrolles 
  8. [Fo] Fox R.H.: Free differential calculus I. Ann. of Math., 57 (1953). Zbl0050.25602MR53938
  9. [Ga] Gauss K.F.: Zur mathematischen Theorie der electrodynamism Wirkungen. Werke Königl. Gessell. Wiss. Göttingen, vol 5, (1877). 
  10. [G-L] Gordon C. McA - Litherland R.A.: On the signature of a link. Invent. Math., 47 (1978). Zbl0391.57004MR500905
  11. [Ja] Jacquemard A.: Calcul formel sur les tresses fermées. (dans ce même volume). 
  12. [Jo] Jones V.: A polynomial invariant for knots via Von Neumann algebras. Bull. Am. math. Soc, vol 12, Number 1, (1985). Zbl0564.57006MR766964
  13. [Ka] Kauffman L.H.: States models and the Jones polynomials. Topology, Vol. 26, No 3., (1987). Zbl0622.57004MR899057
  14. [L-M] Langevin R. - Michel F.: Nombres de Milnor d'un entrelacs brunnien. Bull. Soc. Math. Fr. Tome 113, Fasc 1, (1985). Zbl0581.57004MR807826
  15. [Mi] Milnor J.: Isotopy of links. Lefschtetz symposium, Princeton Math. Ser.12 (1957). Zbl0080.16901
  16. [Mo] Morton H.R.: Infinitefy many fibered knots having the same Alexander polynomial. Topology, 17 (1978). Zbl0383.57005MR486796
  17. [Ro] Rolfsen D.: Knots and links. Publish of Perish, (1975). Zbl0854.57002MR515288
  18. [R] Rolin J.Ph.: Géométrie intégrale et invariants d'isotopie. Thèse de troisiéme cycle, Dijon (1985). 
  19. [Ta] Tait P.G.: On Knots I, II, III. Scientific Papers, I. Cambridge Univ. Press (1898). 
  20. [Th] Thistelthwaite M.B.: A spanning tree expansion of the Jones polynomial. Topology Vol 26, No 3, (1987). Zbl0622.57003MR899051
  21. [Tu] Tutte W.T.: Graph Theory. Encyclopedia of mathemathics and its applications, Vol 21, (1984). Zbl0554.05001MR746795

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.