Duality theory in mathematical programming and optimal control

Jiří V. Outrata; Jiří Jarušek

Kybernetika (1984)

  • Volume: 20, Issue: Suppl2, page (1)-119
  • ISSN: 0023-5954

How to cite

top

Outrata, Jiří V., and Jarušek, Jiří. "Duality theory in mathematical programming and optimal control." Kybernetika 20.Suppl2 (1984): (1)-119. <http://eudml.org/doc/27410>.

@article{Outrata1984,
author = {Outrata, Jiří V., Jarušek, Jiří},
journal = {Kybernetika},
keywords = {duality theory; nonsmooth locally Lipschitz problems; perturbations; optimal control; survey},
language = {eng},
number = {Suppl2},
pages = {(1)-119},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Duality theory in mathematical programming and optimal control},
url = {http://eudml.org/doc/27410},
volume = {20},
year = {1984},
}

TY - JOUR
AU - Outrata, Jiří V.
AU - Jarušek, Jiří
TI - Duality theory in mathematical programming and optimal control
JO - Kybernetika
PY - 1984
PB - Institute of Information Theory and Automation AS CR
VL - 20
IS - Suppl2
SP - (1)
EP - 119
LA - eng
KW - duality theory; nonsmooth locally Lipschitz problems; perturbations; optimal control; survey
UR - http://eudml.org/doc/27410
ER -

References

top
  1. E. Asplund, R. T. Rockafellar, Gradients of convex functions, Trans. Amer. Math. Society 189 (1969), 443-467. (1969) Zbl0181.41901MR0240621
  2. A. Auslender, Optimization, Methodes Numeriques, Masson, Paris 1976. (1976) MR0441204
  3. V. I. Blagodatskich, On the convexity of reachable sets, (in Russian). Differenciaľnye Uravnenija VIII (1972), 2149-2155. (1972) 
  4. F. L. Chernousko, N. V. Banichuk, Variational Problems of Mechanics and Control, (in Russian). Nauka, Moskva 1973. (1973) 
  5. A. Charnes, W. W. Cooper, Programming with linear fractional functional, Naval Res. Logist. Quart. 9 (1962), 181-196. (1962) MR0152370
  6. R. J. Duffin E. L. Peterson, C. Zener, Geometric Programming - Theory and Application, J. Wiley and Sons, New York 1967. (1967) MR0214374
  7. R. E. Edwards, Functional Analysis - Theory and Applications, Holt, Rinehart ard Winston, New York 1965. (1965) Zbl0182.16101MR0221256
  8. I. Ekeland, R. Temam, Analyse Convexe et Problèmes Variationnels, Dunod, Paris 1974. (1974) Zbl0281.49001MR0463993
  9. E. G. Golshtein, Gradient methods for determination of saddle points and modified Lagrangians, In: Proc. of the Workshop "Matem. Optimierung - Theorie und Anwendungen", Wartburg/Eisenach 1983. (1983) 
  10. M. R. Hestenes, Multiplier and gradient methods, J. Optimiz. Theory Appl. 4 (1969), 303-320. (1969) Zbl0208.18402MR0271809
  11. O. A. Ladyzhenskaya, Boundary Value Problems of Mathematical Physics, (in Russian). Nauka, Moskva 1973. (1973) MR0599579
  12. C. Lemaréchal, Nondifferentiable optimization, subgradient and ϵ -subgradient methods, In: Numerical Methods in Optimization and Operations Research (Proc. of a Conference held at Oberwolfach, 1975), Springer Verlag, Berlin 1976. (1975) MR0496691
  13. C. Lemaréchal, A view of line-searches, In: Optimization and Optimal Control (Proc. of a Conference held at Oberwolfach, 1980, A. Auslender, W. Oettli, J. Stoer, eds.), Springer Verlag, Berlin 1981. (1980) MR0618474
  14. P. O. Lindberg, A generalization of Fenchel conjugation giving generalized Lagrangians and symmetric nonconvex duality, In: Survey of Mathematical Programming (Proc. of the 9th Internat. Mathematical Programming Symp., A Prekopa, ed.), Budapest 1976. (1976) 
  15. P. O. Lindberg, Report TRITA-MAT-1976-12, Dept. of Math., Royal Inst, of Technology, Stockholm. 
  16. D. E. Luenberger, Optimization by Vector Space Methods, J. Wiley and Sons, New York 1968. (1968) 
  17. G. P. McCormick, Nonlinear Programming, J. Wiley and Sons, New York 1983. (1983) Zbl0563.90068MR0693095
  18. G. D. Maistrovskii, Gradient methods for finding saddle points, (in Russian). Ekonom. i Mat. Metody 12 (1976), 917-929. (1976) MR0451122
  19. J. J. Moreau, Proximité et dualité dans un espace Hilbertian, Bull. Soc. Math. France 93 (1965),273-299. (1965) MR0201952
  20. J. V. Outrata, Duality theory for a class of discrete optimal control problems, In: Proc. 1978 IFAC Congress, 2, 1085-1092, Pergamon Press, London 1978. (1978) 
  21. J. V. Outrata, Z. Schindler, Augmented Lagrangians for a class of convex continuous optimal control problems, Problems Control Inform. Theory 10 (1981), 67-81. (1981) MR0618443
  22. J. V. Outrata, J. Jarušek, On Fenchel dual schemes in convex optimal control problems, Kybernetika 18 (1982), 1-21. (1982) MR0679777
  23. B. T. Polyak, A general method for solution of extremal problems, Doklady AN SSSR 174 (1967), 33-36. In Russian. (1967) MR0217997
  24. B. T. Polyak, Minimization of nonsmooth functionals, Zh. vych. mat. i mat. fiz. 9 (1969) 504-521. In Russian. (1969) MR0250452
  25. J. Ch. Pomerol, P. Levine, Sufficient conditions for Kuhn-Tucker vectors in convex programming, SIAM J. Control Optimiz. 17 (1976), 689-699. (1976) MR0548698
  26. M. J. D. Powell, A method for nonlinear constraints in minimization problems, In: Optimization (R. Fletcher, ed.), Academic Press, New York 1969, 283 - 298. (1969) Zbl0194.47701MR0272403
  27. R. T. Rockafellar, Extension of Fenchel's duality theorem for convex functions, Duke Math. J. ii(1966), 81-89. (1966) Zbl0138.09301MR0187062
  28. R. T. Rockafellar, Integrals which are convex functionals, Pacific J. Math. 24 (1968), 525-539. (1968) Zbl0159.43804MR0236689
  29. R. T. Rockafellar, Some convex programs whose duals are linearly constrained, In: Non-linear Programming (J. B. Rosen, O. L. Mangasarian, K. Ritter, eds.), Academic Press, New York 1970, 293-322. (1970) Zbl0252.90046MR0281500
  30. R. T. Rockafellar, A dual approach to solving nonlinear programming problems by unconstrained optimization, Math. Programming 5 (1973), 354-373. (1973) Zbl0279.90035MR0371416
  31. R. T. Rockafellar, The multiplier method of Hestenes and Powell applied to convex programming, J. Optimiz. Theory Appl. 12 (1973), 555 - 562. (1973) Zbl0254.90045MR0334953
  32. R. T. Rockafellar, Conjugate Duality and Optimization, SIAM/CBMS monograph series No. 16, SIAM Publications, 1974. (1974) Zbl0296.90036MR0373611
  33. S. Schaible, Parameter-free convex equivalent and dual programs of fractional programming problems, Z. Oper. Res. 18 (1974), 187-196. (1974) Zbl0291.90067MR0351464
  34. S. Schaible, Duality in fractional programming: A unified approach, Oper. Res. 24 (1976), 452-461. (1976) Zbl0348.90120MR0411644
  35. S. Schaible, Fractional programming. I. Duality, Management Sci. 22 (1976), 858-867. (1976) Zbl0338.90050MR0421679
  36. J. F. Toland, Duality in nonconvex optimization, J. Math. Anal. Appl. 66 (1978), 399-415. (1978) Zbl0403.90066MR0515903
  37. J. F. Toland, A duality principle for non-convex optimisation and the calculus of variations, Arch. Rat. Mech. Anal. 71 (1979), 41-61. (1979) Zbl0411.49012MR0522706
  38. A. P. Wierzbicki, S. Kurcyusz, Projection on a cone, penalty functionals and duality theory for problems with inequality constraints in Hilbert space, SIAM J. Control Optimiz. 75 (1977), 25-56. (1977) Zbl0355.90045MR0438720
  39. J. Nedoma, Contribution to the Arrow-Hurwicz concave programming method, Ekonomicko-matematický obzor 2 (1966), 247-260. (1966) MR0204160
  40. K. J. Arrow, L. Hurwicz, Reduction of constrained maxima to saddlepoint problems, In: Proc. of 3-rd Berkeley Symposium on Mathematical Statistical and Probability. Univ. of California Press, Berkeley 1956. (1956) MR0084938
  41. K. J. Arrow F. J. Gould, S. M. Howe, A generalized saddle-point result for constrained optimization, Math. Programming 5 (1973), 225-234. (1973) MR0329641
  42. M. Atteia, A. El Quortobi, Quasi-convex duality, In: Optimization and Optimal Control (Proc. of a Conf. Held at Oberwolfach March 1980; A. Auslender, W. Oettli, J. Stoer, eds.). L. N. in Control Inform. Sci., Vol. 30, Springer-Verlag, Berlin 1981. (1980) 
  43. E. J. Balder, An extension of duality-stability relations to nonconvex optimization problems, SIAM J. Control Optim. 75 (1977), 329-343. (1977) Zbl0366.90103MR0452694
  44. A. Ben-Tal, A. Ben-Israel, F-convex functions: properties and applications, In: Generalized Concavity in Optimization and Economics. Academic Press, New York 1981. (1981) Zbl0535.90074
  45. D. P. Bertsekas, Combined primal-dual and penalty methods for constrained minimization, SIAM J. Control 13 (1975), 521-544. (1975) Zbl0269.90044MR0372719
  46. D. P. Bertsekas, Constrained-Optimization and Lagrange Multiplier Methods, Academic Press, New York 1982. (1982) Zbl0572.90067MR0690767
  47. J. D. Buys, Dual Algorithms for Constrained Optimization, Thesis, Leiden 1972. (1972) MR0334506
  48. B. D. Craven, Invex functions and constrained local minima, Bull. Austral. Math. Soc. 24 (1981), 357-366. (1981) Zbl0452.90066MR0647362
  49. J. P. Crouzeix, Conjugacy in quasiconvex analysis, In: Convex Analysis and Its Applications. (Proc. of a Conference Held at Murat-le-Quaire, March 1976, A. Auslender, ed.). L. N. in Econom. and Math. Systems, Vol. 144. Springer-Verlag, Berlin 1977. (1976) MR0482465
  50. J. P. Crouzeix, Conditions for convexity of quasiconvex functions, Math. Oper. Res. 5 (1980), 120-125. (1980) Zbl0428.26007MR0561160
  51. J. P. Crouzeix, J. A. Ferland, Criteria for quasiconvexity and pseudoconvexity and their relationships, In: Generalized Concavity in Optimization and Economics. Academic Press, New York 1981. (1981) Zbl0538.90079
  52. V. F. Demyanov, V. N. Malozemov, An Introduction to Minimax, (in Russian). Nauka, Moscow 1972. (1972) MR0475822
  53. R. Deumlich, K.-H. Elster, φ -conjugation and nonconvex optimization, Math. Operationsforsch. Statist. Ser. Optim. 14 (1983), 125-149. (1983) Zbl0524.90081MR0694807
  54. S. Dolecki, S. Kurcyusz, On φ -convexity in extremal problems, SIAM J. Control Optim. 16 (1978), 277-300. (1978) Zbl0397.46013MR0479394
  55. S. Dolecki, Semicontinuity in constrained optimization. Part II, Control. Cybernet. 7 (1978), 51-68. (1978) Zbl0422.90086MR0641918
  56. M. Dragomirescu, H-duality, In: Proc. of the 6th Conference on Probability Theory, Brasov, Sept. 1979, (B. Bereanu, Ş. Grigorescu, M. Iosifescu, T. Postelnicu, eds.). Ed. Acad. Rep. Soc. Rom., Bucureşti 1981. (1979) Zbl0484.90079MR0589566
  57. I. Ekeland, Legendre duality in nonconvex optimization and calculus of variations, SIAM J. Control. Optim. 15 (1977), 905-934. (1977) Zbl0377.90089MR0458479
  58. I. Ekeland, Problèmes variationnels non convexes en dualité, C. R. Acad. Sci. Paris, t. 291, Série A-493 (1980). (1980) Zbl0448.90063MR0599991
  59. F. J. Gould, Extensions of Lagrange multiplier functions and duality in nonconvex programming, SIAM J. Appl. Math. 17 (1969), 1280-1297. (1969) MR0263426
  60. H. J. Greensberg, W. P. Pierskalla, Quasiconjugate functions and surrogate duality, Cahiers Centre Études Rech. Oper. 15 (1973), 437-448. (1973) MR0366402
  61. R. Kaltcheva J. V. Outrata Z. Schindler, M. Straškraba, An optimization model for the economic control of reservoir eutrophication, Ecological Modelling 77 (1982), 121-128. (1982) 
  62. P. Kanniappan, Fenchel-Rockafellar type duality for a non-convex non-differentia! optimization problem, J. Math. Anal. Appl. 97 (1983), 266-276. (1983) MR0721242
  63. F. Lempio, H. Maurer, Differential stability in infinite-dimensional nonlinear programming, Appl. Math. Optim. 6 (1980), 139-152. (1980) Zbl0426.90072MR0563531
  64. H. Maurer, J. Zowe, First and second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems, Math. Programming 16 (1979), 98-110. (1979) Zbl0398.90109MR0517762
  65. O. L. Mangasarian, Unconstrained Lagrangians in nonlinear programming, SIAM J. Control 13 (1975), 772-791. (1975) Zbl0269.90045MR0373626
  66. H. Nakayama H. Sagama, Y. Sawaragi, A generalized Lagrangian dnd multiplier method, J. Optim. Theory Appl. 17 (1975), 211-227. (1975) MR0437056
  67. R. Nehse, Some general separation theorems, Math. Nachr. 84 (1978), 319-327. (1978) Zbl0323.46004MR0518130
  68. R. Nehse, A new concept of separation, Comment. Math. Univ. Carolin. 22 (1981), 169-179. (1981) Zbl0518.46005MR0609945
  69. E. A. Nurminskii, Numerical Methods for the Solution of Deterministic and Stochastic Minimax Problems, (in Russian). Naukova dumka, Kiev 1979. (1979) MR0537769
  70. E. Polak, Computational Methods in Optimization, Academic Press, New York 1971. (1971) MR0282511
  71. D. A. Pierre, M. J. Lowe, Mathematical Programming Via Augmented Lagrangians, Addison-Wesley Publ. Comp., Reading 1975. (1975) Zbl0347.90048
  72. R. T Rockafellar, Augmented Lagrange multiplier functions and duality in nonconvex programming, SIAM J. Control 12 (1974), 268-285. (1974) Zbl0257.90046MR0384163
  73. R. T. Rockafellar, Solving a nonlinear programming problem by way of a dual problem, Symposia Mathematica 19 (1976), 135-160. (1976) Zbl0394.90078MR0446522
  74. S. Rolewicz, On conditions warantying φ -subdifferentiability, Math. Programming Study 14, (1981), 215-224. (1981) MR0600131
  75. Z. Schindler, Multiplier Methods in Discrete-Time Optimal Control, (in Czech). Ph.D. Thesis, Prague 1980. (1980) 
  76. I. Singer, A Fenchel-Rockafellar type duality theorem for maximization, Bull. Austral. Math. Soc. 20 (1979), 193-198. (1979) Zbl0404.90101MR0557226
  77. I. Singer, Some new applications of the Fenchel-Rockafellar duality theorem: Lagrange multipliers theorems and hyperplane theorems for convex optimization and best approximation, Nonlinear Analysis 3 (1979) 2, 239-248. (1979) MR0525974
  78. R. Temam, Nouvelles applications de la dualité en calcul des variations, Analyse Convexe et Ses Applications, Comptes Rendus, Janvier 1974. Springer-Verlag, Berlin 1974. (1974) MR0482469
  79. A. P. Wierzbicki, A. Hatko, Computational methods in Hilbert space for optimal control problems with delays, In: Proc. of 5th IFIP Conf. on Optimization Techniques, Rome (R. Conti, A. Ruberti, eds.). L. N. in Comp. Sci., Vol. 3, Springer-Verlag, Berlin 1973. (1973) Zbl0289.49030MR0448218
  80. E. H. Zarantonello, Projections on convex sets in Hilbert space and spectral theory, In: Contributions to Nonlinear Functional Analysis (E. H. Zarantonello, ed.). Academic Press, New York 1971. (1971) Zbl0281.47043
  81. J. L. Lions, E. Magenes, Problèmes aux limites non-homogénes et applications, Dunod, Paris 1968. (1968) Zbl0165.10801
  82. A.D. Ioffeand V. M. Tichomirov, Extensions of variational problems, Trans. Moscow Math. Soc. 18 (1968), 207-273. (1968) 
  83. J. P. Aubin, Gradients généralisés de Clarke, Ann. Sci. Math. Québec II (1978), 2, 197-252. (1978) Zbl0411.49001MR0516562
  84. A. Auslender, Differentiable stability in non-convex and non-differentiable programming, Math. Programming Study 10 (1979), 29-41. (1979) Zbl0403.90068MR0527055
  85. J. M. Borwein, Semi-infinite programming duality: how special is it?, In: Semi-infinite Programming and Applications. (Proc. of a conference, A. V. Fiacco, K. O. Kortanek, Eds.). L. N. in Econom. and Math. Systems, Vol. 215, Springer-Verlag, Berlin 1983. (1983) Zbl0514.49019MR0709266
  86. F. H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc. 205 (1975), 247-262. (1975) Zbl0307.26012MR0367131
  87. F. H. Clarke, Generalized Gradients of Lipschitz Functionals, MRC Technical Summary Report # 1687, University of Wisconsin-Madison 1976. (1976) 
  88. F. H. Clarke, A new approach to Lagrange multipliers, Math. Oper. Res. 1 (1976), 165-174. (1976) Zbl0404.90100MR0414104
  89. F. H. Clarke, Optimization and Nonsmooth Analysis, J. Wiley and Sons, New York 1983. (1983) Zbl0582.49001MR0709590
  90. V. F. Demyanov, Nondifferentiable Optimization, (in Russian). Nauka, Moscow 1981. (1981) MR0673171
  91. J. Gauvin, The generalized gradient of a marginal function in mathematical programming, Math. Oper. Res. 4 (1979), 458-463. (1979) Zbl0433.90075MR0549132
  92. J.-B. Hiriart Urruty, New concepts in nondifferentiable programming, Bull. Soc. Math. France, Mem. 60 (1979), 57-85. (1979) Zbl0469.90071MR0562256
  93. A. D. Ioffe V. M. Tichomirov, Theory of Extremal Problems, (in Russian). Nauka, Moscow 1974. (1974) MR0410502
  94. A. D. Ioffe, Necessary and sufficient conditions for a local minimum, (3 parts). SIAM J. Control. Optimiz. 17 (1979), 245-265. (1979) Zbl0417.49029MR0525025
  95. O. A. Ladyzhenskaya V. A. Solonnikov, N. N. Uralceva, Linear and Quasilinear Equations of the Parabolic Type, (in Russian). Nauka, Moscow 1967. (1967) 
  96. CI. Lemaréchal J. J. Strodiot, A. Bihain, On a Bundle Algorithm for Nonsmooth Optimization, NPS 4, Madison 1980. (1980) 
  97. O. L. Mangasarian, S. Fromowitz, The Fritz John necessary optimality conditions in the presence of equality and inequality constraints, J. Math. Anal. Appl. 17(1967), 37-47. (1967) MR0207448
  98. R. Mifflin, Semismooth and semiconvex functions in optimization, SIAM J. Control Optimiz. 15 (1977), 959-972. (1977) MR0461556
  99. J. Nečas, Introduction to the Theory of Nonlinear Elliptic Equations, Teubner Texte zur Math., Band 52, Teubner Verlag, Leipzig 1983. (1983) MR0731261
  100. J. Nečas, I. Hlaváček, Mathematical Theory of Elastic and Elasto-Plastic Bodies, An Introduction. Elsevier, Amsterdam -Oxford-New York 1981. (1981) MR0600655
  101. J. V. Outrata, On a class of nonsmooth optimal control problems, Appl. Math. Optim. 10 (1983), 287-306. (1983) Zbl0524.49021MR0713480
  102. J. V. Outrata, Z. Schindler, On some nondifferentiable problems in optimal control, Prep. of the IIASA Workshop "Nondifferentiable optimization: Motivations and Applications" held at Sopron, September 1984. (1984) MR0822009
  103. J. V. Outrata, J. Jarušek, Exact penalties with Sobolev norms in optimal control, Proc. of the Workshop "Mathematical Programming - Theory and Applications" held at Wartburg, November 1984. (1984) 
  104. T. Pietrzykowski, The potential method for conditional maxima in the locally compact metric spaces, Numer. Math. 14 (1970), 4, 325-329. (1970) Zbl0195.46304MR0256730
  105. J. C. Pomerol, The Lagrange multiplier set and the generalized gradient set of the marginal function of a differentiable program in a Banach space, J. Optim. Theory Appl. 38 (1982), 307-317. (1982) Zbl0472.90077MR0686209
  106. R. T. Rockafellar, The Theory of Subgradients and Its Applications to Problems of Optimization: Convex and Nonconvex Functions, Helderman Verlag, Berlin 1981. (1981) Zbl0462.90052MR0623763
  107. T. I. Sivelina, The minimization of one kind of quasidifferentiable functions, (in Russian). Vestnik LGU (1983), 7, 103-105. (1983) MR0702639
  108. Z. Schindler, Optimal control of the eutrophisation in water reservoirs, (in Czech). Vodohosp. Časopis 30 (1982), 5, 536-548. (1982) 
  109. R. H. Smith, Multiplier Functionals for Programming in Normed Spaces, Ph.D. Thesis, Johns Hopkins Univ., Baltimore 1971. (1971) 
  110. R. H. Smith, V. D. VandeLinde, A saddle-point optimality criterion for nonconvex programming in normed spaces, SIAM J. Appl. Math. 23 (1972), 2, 203-213. (1972) MR0317778
  111. L. Thibault, Sur les fonctions compactement lipschitziennes et leurs applications: programmation mathématique, controle optimal, espérance conditionnele, Thèses, Montpellier 1980. (1980) 
  112. J.-B. Hiriart Urruty, Gradients généralisés de fonctions marginales, SIAM J. Control Optimiz. 16 (1978), 301-316. (1978) Zbl0385.90099MR0493610
  113. S. Agmon A. Douglis, L Nirenberg, Estimates near boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Part II, Comm. Pure Appl. Math. 17 (1964), 35-92. (1964) MR0162050
  114. J. A. Nelder, R. Mead, A simplex method for function minimization, Computer J. 7 (1965), 4, 308-313. (1965) Zbl0229.65053
  115. V. F. Demyanov S. Gamidov, T. I. Sivelina, An algorithm for minimizing a certain class of quasidifferentiable functions, NASA Working Paper WP-83-122. 
  116. R. E. Burkard, Methoden der ganzzähligen Optimierung, Springer-Verlag, Berlin-Heidelberg-New York 1972. (1972) MR0342175
  117. W. I. Zangwill, Non-linear programming via penalty functions, Management Sci. 13 (1967), 344-358. (1967) Zbl0171.18202MR0252040

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.