Quotient Rings of Right Noetherian Rings at Semi-Prime Ideals
Publications du Département de mathématiques (Lyon) (1973)
- Volume: 10, Issue: 1, page 85-92
- ISSN: 0076-1656
Access Full Article
topHow to cite
topMichler, Gerhard O.. "Quotient Rings of Right Noetherian Rings at Semi-Prime Ideals." Publications du Département de mathématiques (Lyon) 10.1 (1973): 85-92. <http://eudml.org/doc/274171>.
@article{Michler1973,
author = {Michler, Gerhard O.},
journal = {Publications du Département de mathématiques (Lyon)},
language = {eng},
number = {1},
pages = {85-92},
publisher = {Université Claude Bernard - Lyon 1},
title = {Quotient Rings of Right Noetherian Rings at Semi-Prime Ideals},
url = {http://eudml.org/doc/274171},
volume = {10},
year = {1973},
}
TY - JOUR
AU - Michler, Gerhard O.
TI - Quotient Rings of Right Noetherian Rings at Semi-Prime Ideals
JO - Publications du Département de mathématiques (Lyon)
PY - 1973
PB - Université Claude Bernard - Lyon 1
VL - 10
IS - 1
SP - 85
EP - 92
LA - eng
UR - http://eudml.org/doc/274171
ER -
References
top- [1] J.E. Bjork, Conditions which imply that subrings of Artinian rings are Artinian. J. reine angew. Math.247 (1971), p. 123-138. Zbl0211.36402MR280529
- [2] A.W. Goldie, Semi-prime rings with maximum condition. Proc. London Math. Soc.10. (1960), p. 201-220. Zbl0091.03304MR111766
- [3] O. Goldman, Rings and modules of quotients. J. Algebra25 (1973), p. 519-521. Zbl0201.04002MR245608
- [4] R. Hart, Krull dimension and global dimension of simple Ore extensions. Math. Z.121 (1971), p. 341-345. Zbl0212.05801MR297759
- [5] A.G. Heinicke, On the ring of quotients at a prime ideal of a right Noetherian ring, Canad. J. Math.24 (1972), p. 703-712. Zbl0219.16006MR299633
- [6] J. Kuzmanovich, Completions of Dedekind prime rings and second endomorphism rings, Pacific J. Math.36 (1971), p. 721-729. Zbl0238.16006MR284470
- [7] J. Lambek, Lectures on Rings and Modules, Waltham, Toronto, London, 1966. Zbl0143.26403MR206032
- [8] J. Lambek, Torsion theories, additive semantics and rings of quotients. Springer Verlag, Lectures Notes in Mathematics177, Berlin, Heidelberg, New-York, 1971. Zbl0213.31601MR284459
- [9] J. Lambek and G. Michler, The torsion theory at a prime ideal of a right Noetherian ring. J. Algebra25 (1973) p. 364-389. Zbl0259.16018MR316487
- [10] J. Lambek and G. Michler, Localization of right Noetherian rings at semi-prime ideals, Canad. J. Math. (to appear). Zbl0253.16006MR360658
- [11] J. Nill,Torsionstheorien rechtsnoetherscher Ringe und ihre Quotientenringe. Thesis, Universität Tübingen, 1973. Zbl0275.16021
- [12] J.C. Robson, Artinian quotient rings. Proc. London Math. Soc. (3) 17 (1967), p. 600-616. Zbl0154.28803MR217108
- [13] W. Schelter and L. Small, Some pathological rings of quotients, (to appear). Zbl0344.16002MR429973
- [14] B. Stenstrom, Rings and modules of quotients, Springer Verlag, Lecture Notes in Mathematics237, Berlin, Heidelberg, New-York, 1971. Zbl0229.16003MR325663
- [15] H. Storrer, Rings of quotients of perfect rings, Math. Zeitschrift, 122 (1971) p. 151-165. Zbl0214.05302MR299636
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.