Cohomologies et déformations de certaines algèbres de Lie -graduées

Faouzi Ammar

Publications du Département de mathématiques (Lyon) (1995)

  • Volume: 13, Issue: 2, page 1-77
  • ISSN: 0076-1656

How to cite

top

Ammar, Faouzi. "Cohomologies et déformations de certaines algèbres de Lie $\mathbb {Z}$-graduées." Publications du Département de mathématiques (Lyon) 13.2 (1995): 1-77. <http://eudml.org/doc/274235>.

@article{Ammar1995,
author = {Ammar, Faouzi},
journal = {Publications du Département de mathématiques (Lyon)},
keywords = {differentiable deformations; cohomology of Lie algebras; Lie algebra of vector fields; infinitesimal automorphism; symplectic structure; contact structure},
language = {fre},
number = {2},
pages = {1-77},
publisher = {Université Claude Bernard - Lyon 1},
title = {Cohomologies et déformations de certaines algèbres de Lie $\mathbb \{Z\}$-graduées},
url = {http://eudml.org/doc/274235},
volume = {13},
year = {1995},
}

TY - JOUR
AU - Ammar, Faouzi
TI - Cohomologies et déformations de certaines algèbres de Lie $\mathbb {Z}$-graduées
JO - Publications du Département de mathématiques (Lyon)
PY - 1995
PB - Université Claude Bernard - Lyon 1
VL - 13
IS - 2
SP - 1
EP - 77
LA - fre
KW - differentiable deformations; cohomology of Lie algebras; Lie algebra of vector fields; infinitesimal automorphism; symplectic structure; contact structure
UR - http://eudml.org/doc/274235
ER -

References

top
  1. 1- M. Adler : On a trace functional for formal pseudo-differential operator and the symplectic structure of the K-DV Equation. Inventiones Math. n° 5 (1979) p.p 219-248. Zbl0393.35058
  2. 2- A. Lichnerowicz : Déformations et quantifications, Lectures Notes106 (1979) p.p 209-219. Zbl0426.58009MR553086
  3. 3- G. Leger E. Luks : Cohomology of nilradicals of Borel subalgebras, Transactions of the american mathematical society p.p 305-316 Volume 195 année 1974. Zbl0348.17005MR364554
  4. 4- G. Leger E. Luks : Cohomology theorems of Borel-like solvable Lie algebras in arbitrary characteristic. Canad. J. Math. volume 24 (1972) p.p 1019-1026. Zbl0272.17004MR320104
  5. 5- B. Feigin A. Fialowski : Cohomology of the nilpotent subalgebras of current Lie algebras. Studia scientiarium hathematicarura Hunguaria (1980) Zbl0597.17009
  6. 6- A. Fialowski : Deformations of nilpotent Kac-Moody algebras, Studia scientiarium Mathematicarum Hunguaria volume 13 (1984) Zbl0496.17008MR874514
  7. 7- J.E. Humphreys : Introduction to Lie algebras and representation theory. Third Printing Revised. Springer-Verlag. New YorkHeidelbergBerlin. Zbl0447.17002MR323842
  8. 8- P.J. Hilton U. Stammbach : A course in homological AlgebraSpringer-Verlag. New YorkHeidelbergBerlin. Zbl0238.18006MR1438546
  9. 9- M. De Wilde P.B.A. Lecomte : Formel deformations of the Poisson Lie algebra of a symplectic manifold and Star-products. Existence, equivalence, derivations. Deformation theory of algebras and structures and applications. M. HazewenkelM. Gerstenhaber, Eds Khuver Academie PublishersDordrecht897-9601988 Zbl0685.58039MR981635

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.