Random coefficients bifurcating autoregressive processes

Benoîte de Saporta; Anne Gégout-Petit; Laurence Marsalle

ESAIM: Probability and Statistics (2014)

  • Volume: 18, page 365-399
  • ISSN: 1292-8100

Abstract

top
This paper presents a new model of asymmetric bifurcating autoregressive process with random coefficients. We couple this model with a Galton−Watson tree to take into account possibly missing observations. We propose least-squares estimators for the various parameters of the model and prove their consistency, with a convergence rate, and asymptotic normality. We use both the bifurcating Markov chain and martingale approaches and derive new results in both these frameworks.

How to cite

top

Saporta, Benoîte de, Gégout-Petit, Anne, and Marsalle, Laurence. "Random coefficients bifurcating autoregressive processes." ESAIM: Probability and Statistics 18 (2014): 365-399. <http://eudml.org/doc/274374>.

@article{Saporta2014,
abstract = {This paper presents a new model of asymmetric bifurcating autoregressive process with random coefficients. We couple this model with a Galton−Watson tree to take into account possibly missing observations. We propose least-squares estimators for the various parameters of the model and prove their consistency, with a convergence rate, and asymptotic normality. We use both the bifurcating Markov chain and martingale approaches and derive new results in both these frameworks.},
author = {Saporta, Benoîte de, Gégout-Petit, Anne, Marsalle, Laurence},
journal = {ESAIM: Probability and Statistics},
keywords = {autoregressive process; branching process; missing data; least squares estimation; limit theorems; bifurcating Markov chain; martingale; bifurcating autoregressive process; Galton-Watson tree},
language = {eng},
pages = {365-399},
publisher = {EDP-Sciences},
title = {Random coefficients bifurcating autoregressive processes},
url = {http://eudml.org/doc/274374},
volume = {18},
year = {2014},
}

TY - JOUR
AU - Saporta, Benoîte de
AU - Gégout-Petit, Anne
AU - Marsalle, Laurence
TI - Random coefficients bifurcating autoregressive processes
JO - ESAIM: Probability and Statistics
PY - 2014
PB - EDP-Sciences
VL - 18
SP - 365
EP - 399
AB - This paper presents a new model of asymmetric bifurcating autoregressive process with random coefficients. We couple this model with a Galton−Watson tree to take into account possibly missing observations. We propose least-squares estimators for the various parameters of the model and prove their consistency, with a convergence rate, and asymptotic normality. We use both the bifurcating Markov chain and martingale approaches and derive new results in both these frameworks.
LA - eng
KW - autoregressive process; branching process; missing data; least squares estimation; limit theorems; bifurcating Markov chain; martingale; bifurcating autoregressive process; Galton-Watson tree
UR - http://eudml.org/doc/274374
ER -

References

top
  1. [1] V. Bansaye, Proliferating parasites in dividing cells: Kimmel’s branching model revisited. Ann. Appl. Probab.18 (2008) 967–996. Zbl1142.60054MR2418235
  2. [2] I.V. Basawa and J. Zhou, Non-Gaussian bifurcating models and quasi-likelihood estimation. J. Appl. Probab. A41 (2004) 55–64. Zbl1049.62115MR2057565
  3. [3] B. Bercu, B. de Saporta and A. Gégout-Petit, Asymptotic analysis for bifurcating autoregressive processes via a martingale approach. Electron. J. Probab.14 (2009) 2492–2526. Zbl1190.60019MR2563249
  4. [4] V. Blandin, Asymptotic results for bifurcating random coefficient autoregressive processes (2012). Preprint ArXiv: 1204.2926. Zbl1320.60083
  5. [5] A. Brandt, The stochastic equation Yn + 1 = AnYn + Bn with stationary coefficients. Adv. Appl. Probab.18 (1986) 211–220. Zbl0588.60056MR827336
  6. [6] Q.M. Bui and R.M. Huggins, Inference for the random coefficients bifurcating autoregressive model for cell lineage studies. J. Statist. Plann. Inference81 (1999) 253–262. Zbl0939.62089MR1721556
  7. [7] R. Cowan and R.G. Staudte, The bifurcating autoregressive model in cell lineage studies. Biometrics42 (1986) 769–783. Zbl0622.62105
  8. [8] B. de Saporta, Tail of the stationary solution of the stochastic equation Yn + 1 = anYn + bn with Markovian coefficients. Stochastic Process. Appl.115 (2005) 1954–1978. Zbl1096.60025MR2178503
  9. [9] B. de Saporta, A. Gégout-Petit and L. Marsalle, Parameters estimation for asymmetric bifurcating autoregressive processes with missing data. Electron. J. Stat.5 (2011) 1313–1353. Zbl1274.62192MR2842907
  10. [10] B. de Saporta, A. Gégout Petit and L. Marsalle, Asymmetry tests for bifurcating autoregressive processes with missing data. Stat. Probab. Lett.82 (2012) 1439–1444. Zbl1296.62161MR2929798
  11. [11] J.-F. Delmas and L. Marsalle, Detection of cellular aging in a Galton-Watson process. Stoch. Process. Appl.120 (2010) 2495–2519. Zbl1206.60077MR2728175
  12. [12] M. Duflo, Random iterative models, Applications of Mathematics, vol. 34. Springer-Verlag, Berlin (1997). Zbl0868.62069MR1485774
  13. [13] J. Guyon, Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging. Ann. Appl. Probab. 17 (2007) 1538–1569. Zbl1143.62049MR2358633
  14. [14] J. Guyon, A. Bize, G. Paul, E. Stewart, J.-F. Delmas and F. Taddéi, Statistical study of cellular aging, in CEMRACS 2004, mathematics and applications to biology and medicine, vol. 14, ESAIM: Proc. EDP Sci., Les Ulis (2005) 100–114 (electronic). Zbl1070.92016MR2226805
  15. [15] P. Hall and C.C. Heyde, Martingale limit theory and its application. Probability and Mathematical Statistics. Academic Press Inc., New York (1980). Zbl0462.60045MR624435
  16. [16] J.D. Hamilton, Time series analysis. Princeton University Press, Princeton, NJ (1994). Zbl0831.62061MR1278033
  17. [17] T.E. Harris, The theory of branching processes. Die Grundlehren der Mathematischen Wissenschaften, Bd. 119. Springer-Verlag, Berlin (1963). Zbl0117.13002MR163361
  18. [18] R.M. Huggins, Robust inference for variance components models for single trees of cell lineage data. Ann. Statist.24 (1996) 1145–1160. Zbl0865.62016MR1401842
  19. [19] R.M. Huggins and I.V. Basawa, Extensions of the bifurcating autoregressive model for cell lineage studies. J. Appl. Probab.36 (1999) 1225–1233. Zbl0973.62100MR1746406
  20. [20] R.M. Huggins and I.V. Basawa, Inference for the extended bifurcating autoregressive model for cell lineage studies. Aust. N. Z. J. Stat.42 (2000) 423–432. Zbl1016.62098MR1802966
  21. [21] R.M. Huggins and R.G. Staudte, Variance components models for dependent cell populations. J. AMS89 (1994) 19–29. Zbl0800.62730
  22. [22] S.Y. Hwang and I.V. Basawa, Branching Markov processes and related asymptotics. J. Multivariate Anal.100 (2009) 1155–1167. Zbl1159.62054MR2508378
  23. [23] S.Y. Hwang and I.V. Basawa, Asymptotic optimal inference for multivariate branching-Markov processes via martingale estimating functions and mixed normality. J. Multivariate Anal.102 (2011) 1018–1031. Zbl1274.62547MR2793873
  24. [24] Nicholls, D. F., and Quinn, B. G.Random coefficient autoregressive models: an introduction. In vol. 11, Lect. Notes Statist. Springer-Verlag, New York (1982). Zbl0497.62081MR671255
  25. [25] E. Stewart, R. Madden, G. Paul and F. Taddei, Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biol. 3 (2005) e45. 
  26. [26] C.Z. Wei, Adaptive prediction by least squares predictors in stochastic regression models with applications to time series. Ann. Statist.15 (1987) 1667–1682. Zbl0643.62058MR913581
  27. [27] J. Zhou and I.V. Basawa, Least-squares estimation for bifurcating autoregressive processes. Statist. Probab. Lett.74 (2005) 77–88. Zbl1070.62075MR2189078
  28. [28] J. Zhou and I.V. Basawa, Maximum likelihood estimation for a first-order bifurcating autoregressive process with exponential errors. J. Time Ser. Anal.26 (2005) 825–842. Zbl1097.62091MR2203513

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.