Random coefficients bifurcating autoregressive processes
Benoîte de Saporta; Anne Gégout-Petit; Laurence Marsalle
ESAIM: Probability and Statistics (2014)
- Volume: 18, page 365-399
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topSaporta, Benoîte de, Gégout-Petit, Anne, and Marsalle, Laurence. "Random coefficients bifurcating autoregressive processes." ESAIM: Probability and Statistics 18 (2014): 365-399. <http://eudml.org/doc/274374>.
@article{Saporta2014,
abstract = {This paper presents a new model of asymmetric bifurcating autoregressive process with random coefficients. We couple this model with a Galton−Watson tree to take into account possibly missing observations. We propose least-squares estimators for the various parameters of the model and prove their consistency, with a convergence rate, and asymptotic normality. We use both the bifurcating Markov chain and martingale approaches and derive new results in both these frameworks.},
author = {Saporta, Benoîte de, Gégout-Petit, Anne, Marsalle, Laurence},
journal = {ESAIM: Probability and Statistics},
keywords = {autoregressive process; branching process; missing data; least squares estimation; limit theorems; bifurcating Markov chain; martingale; bifurcating autoregressive process; Galton-Watson tree},
language = {eng},
pages = {365-399},
publisher = {EDP-Sciences},
title = {Random coefficients bifurcating autoregressive processes},
url = {http://eudml.org/doc/274374},
volume = {18},
year = {2014},
}
TY - JOUR
AU - Saporta, Benoîte de
AU - Gégout-Petit, Anne
AU - Marsalle, Laurence
TI - Random coefficients bifurcating autoregressive processes
JO - ESAIM: Probability and Statistics
PY - 2014
PB - EDP-Sciences
VL - 18
SP - 365
EP - 399
AB - This paper presents a new model of asymmetric bifurcating autoregressive process with random coefficients. We couple this model with a Galton−Watson tree to take into account possibly missing observations. We propose least-squares estimators for the various parameters of the model and prove their consistency, with a convergence rate, and asymptotic normality. We use both the bifurcating Markov chain and martingale approaches and derive new results in both these frameworks.
LA - eng
KW - autoregressive process; branching process; missing data; least squares estimation; limit theorems; bifurcating Markov chain; martingale; bifurcating autoregressive process; Galton-Watson tree
UR - http://eudml.org/doc/274374
ER -
References
top- [1] V. Bansaye, Proliferating parasites in dividing cells: Kimmel’s branching model revisited. Ann. Appl. Probab.18 (2008) 967–996. Zbl1142.60054MR2418235
- [2] I.V. Basawa and J. Zhou, Non-Gaussian bifurcating models and quasi-likelihood estimation. J. Appl. Probab. A41 (2004) 55–64. Zbl1049.62115MR2057565
- [3] B. Bercu, B. de Saporta and A. Gégout-Petit, Asymptotic analysis for bifurcating autoregressive processes via a martingale approach. Electron. J. Probab.14 (2009) 2492–2526. Zbl1190.60019MR2563249
- [4] V. Blandin, Asymptotic results for bifurcating random coefficient autoregressive processes (2012). Preprint ArXiv: 1204.2926. Zbl1320.60083
- [5] A. Brandt, The stochastic equation Yn + 1 = AnYn + Bn with stationary coefficients. Adv. Appl. Probab.18 (1986) 211–220. Zbl0588.60056MR827336
- [6] Q.M. Bui and R.M. Huggins, Inference for the random coefficients bifurcating autoregressive model for cell lineage studies. J. Statist. Plann. Inference81 (1999) 253–262. Zbl0939.62089MR1721556
- [7] R. Cowan and R.G. Staudte, The bifurcating autoregressive model in cell lineage studies. Biometrics42 (1986) 769–783. Zbl0622.62105
- [8] B. de Saporta, Tail of the stationary solution of the stochastic equation Yn + 1 = anYn + bn with Markovian coefficients. Stochastic Process. Appl.115 (2005) 1954–1978. Zbl1096.60025MR2178503
- [9] B. de Saporta, A. Gégout-Petit and L. Marsalle, Parameters estimation for asymmetric bifurcating autoregressive processes with missing data. Electron. J. Stat.5 (2011) 1313–1353. Zbl1274.62192MR2842907
- [10] B. de Saporta, A. Gégout Petit and L. Marsalle, Asymmetry tests for bifurcating autoregressive processes with missing data. Stat. Probab. Lett.82 (2012) 1439–1444. Zbl1296.62161MR2929798
- [11] J.-F. Delmas and L. Marsalle, Detection of cellular aging in a Galton-Watson process. Stoch. Process. Appl.120 (2010) 2495–2519. Zbl1206.60077MR2728175
- [12] M. Duflo, Random iterative models, Applications of Mathematics, vol. 34. Springer-Verlag, Berlin (1997). Zbl0868.62069MR1485774
- [13] J. Guyon, Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging. Ann. Appl. Probab. 17 (2007) 1538–1569. Zbl1143.62049MR2358633
- [14] J. Guyon, A. Bize, G. Paul, E. Stewart, J.-F. Delmas and F. Taddéi, Statistical study of cellular aging, in CEMRACS 2004, mathematics and applications to biology and medicine, vol. 14, ESAIM: Proc. EDP Sci., Les Ulis (2005) 100–114 (electronic). Zbl1070.92016MR2226805
- [15] P. Hall and C.C. Heyde, Martingale limit theory and its application. Probability and Mathematical Statistics. Academic Press Inc., New York (1980). Zbl0462.60045MR624435
- [16] J.D. Hamilton, Time series analysis. Princeton University Press, Princeton, NJ (1994). Zbl0831.62061MR1278033
- [17] T.E. Harris, The theory of branching processes. Die Grundlehren der Mathematischen Wissenschaften, Bd. 119. Springer-Verlag, Berlin (1963). Zbl0117.13002MR163361
- [18] R.M. Huggins, Robust inference for variance components models for single trees of cell lineage data. Ann. Statist.24 (1996) 1145–1160. Zbl0865.62016MR1401842
- [19] R.M. Huggins and I.V. Basawa, Extensions of the bifurcating autoregressive model for cell lineage studies. J. Appl. Probab.36 (1999) 1225–1233. Zbl0973.62100MR1746406
- [20] R.M. Huggins and I.V. Basawa, Inference for the extended bifurcating autoregressive model for cell lineage studies. Aust. N. Z. J. Stat.42 (2000) 423–432. Zbl1016.62098MR1802966
- [21] R.M. Huggins and R.G. Staudte, Variance components models for dependent cell populations. J. AMS89 (1994) 19–29. Zbl0800.62730
- [22] S.Y. Hwang and I.V. Basawa, Branching Markov processes and related asymptotics. J. Multivariate Anal.100 (2009) 1155–1167. Zbl1159.62054MR2508378
- [23] S.Y. Hwang and I.V. Basawa, Asymptotic optimal inference for multivariate branching-Markov processes via martingale estimating functions and mixed normality. J. Multivariate Anal.102 (2011) 1018–1031. Zbl1274.62547MR2793873
- [24] Nicholls, D. F., and Quinn, B. G.Random coefficient autoregressive models: an introduction. In vol. 11, Lect. Notes Statist. Springer-Verlag, New York (1982). Zbl0497.62081MR671255
- [25] E. Stewart, R. Madden, G. Paul and F. Taddei, Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biol. 3 (2005) e45.
- [26] C.Z. Wei, Adaptive prediction by least squares predictors in stochastic regression models with applications to time series. Ann. Statist.15 (1987) 1667–1682. Zbl0643.62058MR913581
- [27] J. Zhou and I.V. Basawa, Least-squares estimation for bifurcating autoregressive processes. Statist. Probab. Lett.74 (2005) 77–88. Zbl1070.62075MR2189078
- [28] J. Zhou and I.V. Basawa, Maximum likelihood estimation for a first-order bifurcating autoregressive process with exponential errors. J. Time Ser. Anal.26 (2005) 825–842. Zbl1097.62091MR2203513
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.