# From almost sure local regularity to almost sure Hausdorff dimension for gaussian fields

Erick Herbin; Benjamin Arras; Geoffroy Barruel

ESAIM: Probability and Statistics (2014)

- Volume: 18, page 418-440
- ISSN: 1292-8100

## Access Full Article

top## Abstract

top## How to cite

topHerbin, Erick, Arras, Benjamin, and Barruel, Geoffroy. "From almost sure local regularity to almost sure Hausdorff dimension for gaussian fields." ESAIM: Probability and Statistics 18 (2014): 418-440. <http://eudml.org/doc/274385>.

@article{Herbin2014,

abstract = {Fine regularity of stochastic processes is usually measured in a local way by local Hölder exponents and in a global way by fractal dimensions. In the case of multiparameter Gaussian random fields, Adler proved that these two concepts are connected under the assumption of increment stationarity property. The aim of this paper is to consider the case of Gaussian fields without any stationarity condition. More precisely, we prove that almost surely the Hausdorff dimensions of the range and the graph in any ball B(t0,ρ) are bounded from above using the local Hölder exponent at t0. We define the deterministic local sub-exponent of Gaussian processes, which allows to obtain an almost sure lower bound for these dimensions. Moreover, the Hausdorff dimensions of the sample path on an open interval are controlled almost surely by the minimum of the local exponents. Then, we apply these generic results to the cases of the set-indexed fractional Brownian motion on RN, the multifractional Brownian motion whose regularity function H is irregular and the generalized Weierstrass function, whose Hausdorff dimensions were unknown so far.},

author = {Herbin, Erick, Arras, Benjamin, Barruel, Geoffroy},

journal = {ESAIM: Probability and Statistics},

keywords = {gaussian processes; Hausdorff dimension; (multi)fractional brownian motion; multiparameter processes; hölder regularity; stationarity; Gaussian random fields; multi-fractional Brownian motion; Hölder regularity},

language = {eng},

pages = {418-440},

publisher = {EDP-Sciences},

title = {From almost sure local regularity to almost sure Hausdorff dimension for gaussian fields},

url = {http://eudml.org/doc/274385},

volume = {18},

year = {2014},

}

TY - JOUR

AU - Herbin, Erick

AU - Arras, Benjamin

AU - Barruel, Geoffroy

TI - From almost sure local regularity to almost sure Hausdorff dimension for gaussian fields

JO - ESAIM: Probability and Statistics

PY - 2014

PB - EDP-Sciences

VL - 18

SP - 418

EP - 440

AB - Fine regularity of stochastic processes is usually measured in a local way by local Hölder exponents and in a global way by fractal dimensions. In the case of multiparameter Gaussian random fields, Adler proved that these two concepts are connected under the assumption of increment stationarity property. The aim of this paper is to consider the case of Gaussian fields without any stationarity condition. More precisely, we prove that almost surely the Hausdorff dimensions of the range and the graph in any ball B(t0,ρ) are bounded from above using the local Hölder exponent at t0. We define the deterministic local sub-exponent of Gaussian processes, which allows to obtain an almost sure lower bound for these dimensions. Moreover, the Hausdorff dimensions of the sample path on an open interval are controlled almost surely by the minimum of the local exponents. Then, we apply these generic results to the cases of the set-indexed fractional Brownian motion on RN, the multifractional Brownian motion whose regularity function H is irregular and the generalized Weierstrass function, whose Hausdorff dimensions were unknown so far.

LA - eng

KW - gaussian processes; Hausdorff dimension; (multi)fractional brownian motion; multiparameter processes; hölder regularity; stationarity; Gaussian random fields; multi-fractional Brownian motion; Hölder regularity

UR - http://eudml.org/doc/274385

ER -

## References

top- [1] R.J. Adler, Hausdorff Dimension and Gaussian fields. Ann. Probab.5 (1977) 145–151. Zbl0366.60050MR426123
- [2] R.J. Adler and J.E. Taylor, Random Fields and Geometry. Springer (2007). Zbl1149.60003MR2319516
- [3] A. Ayache and J. Lévy Véhel, Processus à régularité locale prescrite. C.R. Acad. Sci. Paris, Ser. I 333 (2001) 233–238. Zbl0988.60028MR1851631
- [4] A. Ayache, N.-R. Shieh and Y. Xiao, Multiparameter multifractional brownian motion: local nondeterminism and joint continuity of the local times. Ann. Inst. H. Poincaré Probab. Statist (2011). Zbl1268.60048MR2884223
- [5] A. Ayache and Y. Xiao, Asymptotic Properties and Hausdorff Dimensions of Fractional Brownian Sheets. J. Fourier Anal. Appl.11 (2005) 407–439. Zbl1088.60033MR2169474
- [6] D. Baraka, T. Mountford and Y. Xiao, Hölder properties of local times for fractional Brownian motions. Metrika69 (2009) 125–152. Zbl06493840MR2481918
- [7] A. Benassi, S. Cohen and J. Istas, Local self-similarity and the Hausdorff dimension. C.R. Acad. Sci. Paris, Ser. I 336 (2003) 267–272. Zbl1023.60043MR1968271
- [8] A. Benassi, S. Jaffard and D. Roux, Elliptic Gaussian random processes. Rev. Mat. Iberoamericana13 (1997) 19–90. Zbl0880.60053MR1462329
- [9] S.M. Berman, Gaussian sample functions: Uniform dimension and Hölder conditions nowhere. Nagoya Math. J.46 (1972) 63–86. Zbl0246.60038MR307320
- [10] B. Boufoussi, M. Dozzi and R. Guerbaz, Sample path properties of the local time of multifractional Brownian motion. Bernoulli13 (2007) 849–867. Zbl1138.60032MR2348754
- [11] R.M. Dudley, Sample Functions of the Gaussian Process. Ann. Probab.1 (1973) 66–103. Zbl0261.60033MR346884
- [12] K. Falconer, Fractal Geometry: Mathematical Foundation and Applications, 2nd edn. Wiley (2003). Zbl1285.28011MR2118797
- [13] E. Herbin, From N-parameter fractional Brownian motions to N-parameter multifractional Brownian motions. Rocky Mountain J. Math. 36 (2006) 1249–1284. Zbl1135.60020MR2274895
- [14] E. Herbin, Locally Asymptotic Self-similarity and Hölder Regularity. In preparation.
- [15] E. Herbin and E. Merzbach, A set-indexed fractional Brownian motion. J. Theoret. Probab.19 (2006) 337–364. Zbl1120.60035MR2283380
- [16] E. Herbin and E. Merzbach, The Multiparameter fractional Brownian motion, in Math Everywhere. Edited by G. Aletti, M. Burger, A. Micheletti, D. Morale. Springer (2006). Zbl1130.60046MR2281427
- [17] E. Herbin and J. Lévy-Véhel, Stochastic 2-microlocal analysis. Stoch. Process. Appl.119 (2009) 2277–2311. Zbl1175.60032MR2531092
- [18] B. Hunt, The Hausdorff dimension of graphs of Weierstrass functions. Proc. Amer. Math. Soc.126 (1998) 791–800. Zbl0897.28004MR1452806
- [19] J.-P. Kahane, Some random series of functions. Cambridge studies in advanced mathematics. Cambridge University Press, 2nd edn. (1985). Zbl0571.60002MR833073
- [20] D. Khoshnevisan, Multiparameter processes: An Introduction to Random Fields. Springer Monographs in Mathematics. Springer-Verlag, New York (2002). Zbl1005.60005MR1914748
- [21] D. Khoshnevisan and Y. Xiao, Lévy processes: capacity and Hausdorff dimension. Ann. Probab.33 (2005) 841–878. Zbl1072.60040MR2135306
- [22] G.F. Lawler and F.J. Viklund, Optimal Hölder exponent for the SLE path. Duke Math. J.159 (2011) 351–383. Zbl1230.60086MR2831873
- [23] M. Ledoux and M. Talagrand, Probability in Banach Spaces. Springer (1991). Zbl0748.60004MR1102015
- [24] J.R. Lind, Hölder regularity of the SLE trace. Trans. Amer. Math. Soc.360 (2008) 3557–3578. Zbl1141.60066MR2386236
- [25] L. Liu, Stable and multistable processes and localisability. Ph.D. thesis of the University of St. Andrews (2010). Zbl1270.60047
- [26] M.B. Marcus and J. Rosen, Markov Processes, Gaussian Processes and Local Times. Cambridge University Press (2006). Zbl1129.60002MR2250510
- [27] M.M. Meerschaert, W. Wang and Y. Xiao, Fernique-type inequalities and moduli of continuity of anisotropic Gaussian random fields. Trans. Amer. Math. Soc.365 (2013) 1081–1107. Zbl1322.60069MR2995384
- [28] M. Meerschaert, D. Wu and Y. Xiao, Local times of multifractional Brownian sheets. Bernoulli, 14 (2008) 865–898. Zbl1186.60036MR2537815
- [29] S. Orey and W.E. Pruitt, Sample functions of the N-parameter Wiener process. Ann. Probab.1 (1973) 138–163. Zbl0284.60036MR346925
- [30] R.F. Peltier and J. Lévy-Véhel, Multifractional brownian motion: Definition and preliminary results. Rapport de recherche INRIA (RR-2645) (1995) 39.
- [31] W. Pruitt, The Hausdorff dimension of the range of a process with stationary independent increments. J. Math. Mech.19 (1969) 371–378. Zbl0192.54101MR247673
- [32] S. Stoev and M. Taqqu, How rich is the class of multifractional Brownian motions? Stoch. Proc. Appl.116 (2006) 200–221. Zbl1094.60024MR2197974
- [33] V. Strassen, An invariance principle for the law of the iterated logarithm. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete3 (1964) 211–226. Zbl0132.12903MR175194
- [34] S.J. Taylor, The α-dimensional measure of the graph and set of zeroes of a Brownian path, Math. Proc. Cambridge Philos. Soc.51 (1955) 265–274. Zbl0064.05201MR74494
- [35] C.A. Tudor and Y. Xiao, Sample path properties of bifractional Brownian motion. Bernoulli13 (2007) 1023–1052. Zbl1132.60034MR2364225
- [36] D. Wu and Y. Xiao, Geometric properties of fractional Brownian sheets. J. Fourier Anal. Appl.13 (2007) 1–37. Zbl1127.60032MR2296726
- [37] Y. Xiao, Dimension results for Gaussian vector fields and index-α stable fields. Ann. Probab.23 (1995) 273–291. Zbl0834.60040MR1330771
- [38] Y. Xiao, Sample path properties of anisotropic Gaussian random fields, in A Minicourse on Stochastic Partial Differential Equations. Edited by D. Khoshnevisan and F. Rassoul-Agha. Springer, New York. Lect. Notes Math. 1962 (2009) 145–212. Zbl1167.60011MR2508776
- [39] Y. Xiao, On uniform modulus of continuity of random fields. Monatsh. Math.159 (2010) 163–184. Zbl1181.60074MR2564392
- [40] M.I. Yadrenko, Local properties of sample functions of random fields. Selected translations in Mathematics, Statistics and probab. 10 (1971) 233–245. Zbl0267.60038
- [41] L. Yoder, The Hausdorff dimensions of the graph and range of the N-parameter Brownian motion in d-space. Ann. Probab. 3 169–171, 1975. Zbl0321.60060MR359033

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.