Anneaux d'invariants de groupes finis Intersections complètes

Denis Rotillon

Publications mathématiques et informatique de Rennes (1985)

  • Volume: 4, Issue: 4, page 40-70

How to cite

top

Rotillon, Denis. "Anneaux d'invariants de groupes finis Intersections complètes." Publications mathématiques et informatique de Rennes 4.4 (1985): 40-70. <http://eudml.org/doc/274807>.

@article{Rotillon1985,
author = {Rotillon, Denis},
journal = {Publications mathématiques et informatique de Rennes},
keywords = {complete intersection; invariant theory of finite groups},
language = {fre},
number = {4},
pages = {40-70},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {Anneaux d'invariants de groupes finis Intersections complètes},
url = {http://eudml.org/doc/274807},
volume = {4},
year = {1985},
}

TY - JOUR
AU - Rotillon, Denis
TI - Anneaux d'invariants de groupes finis Intersections complètes
JO - Publications mathématiques et informatique de Rennes
PY - 1985
PB - Département de Mathématiques et Informatique, Université de Rennes
VL - 4
IS - 4
SP - 40
EP - 70
LA - fre
KW - complete intersection; invariant theory of finite groups
UR - http://eudml.org/doc/274807
ER -

References

top
  1. [Bl] H. Blichfeldt, Finite Collineation Groups, University of Chicago Press, 1917. 
  2. [Br] R. Brauer, Uber endliche lineare Gruppen von Prinzahlgrad, Math. Annalen169, 73-96 (1967). Zbl0166.28903MR206088
  3. [Co] A.M. Cohen, Finite complex reflection groups, Ann. Sci. Ecole Norm. Sup.9, 379-436 (1976). Zbl0359.20029MR422448
  4. [G.W] S. Goto, K. Watanabe, The embedding dimension and multiplicities of rational singularities which are IC. To appear. 
  5. [Go1] N.L. Gordeev, Invariants of linear groups generated by matrices with two non unit eigenvalues, J of Soviet Math., 1984, 2919-27. Zbl0548.20030
  6. [Go2] N.L. Gordeev, On the Stanley Conjecture and the classification of finite groups whose algebra of invariants is a complete intersectionJ of Soviet Math. Doklady26, 3, 722-24 (1982). Zbl0529.20028MR685834
  7. [H1] W.G. Huffmann, Linear groups containing an element with an eigenspace of codimension two, J of Algebra34, 260-87 (1975). Zbl0302.20037MR401936
  8. [H2] W.G. Huffmann, Imprimitive linear groups generated by elements containing an eigenspace of codimension two, J of Algebra63, (1980) 499-513. Zbl0435.20030MR570727
  9. [H.S] W.G. Huffmann, N.J. Sloane, Most primitive groups have messy invariants, Advance in Math.32, 118-127 (1979). Zbl0421.20005MR535618
  10. [H.W] W.C. Huffmann, D.B. Wales, Linear groups of degree n containing an element with exactly n-2 equel eigenvalues, J linear and Multilinear Algebra, 3, 53-59 (1975). Zbl0326.20038MR401937
  11. [K.W] V. Kac, K. Watanabe, Finite linear groups whose rings of invariants is a complete intersection, Bull. AMS6 (1982) 221-23. Zbl0483.14002MR640951
  12. [L.T] J. Lipman, B. Teissier, Pseudo Rationnel local rings and a theorem of Briançon-Skoda about integral closures of idealsMichigan J of Math., 28 (1981) 97-116. Zbl0464.13005MR600418
  13. [M] H.H. Mitchell, Determinations of all primitive collineation groups in more then four variables which contain homologies, Am J of Math.36 (1914) 1-12. Zbl45.0253.01MR1506202JFM45.0253.01
  14. [N1] N. Nakajima, Relative invariants of finite groups, J of Algebra, 79, 218-34 (1982). Zbl0499.20029MR679980
  15. [N2] H. Nakajima, Rings of invariants of finite groups which are hypersurfaces I, J of Algebra, 80, 279-94 (1983). Zbl0524.14013MR691804
  16. [N3] H. Nakajima, Rings of invariants of finite groups which are hypersurface II, to appear inAdvances in Math. Zbl0626.14010MR893470
  17. [N4] H. Nakajima, Quotient singularities which are complete intersection, Manuscripta Math.48, 163-87 (1984). Zbl0577.14038MR753729
  18. [N5] H. Nakajima, Quotient complete intersections of affine spaces by finite linear groups, Preprint. Zbl0596.14038MR792768
  19. [N-W] H. Nakajima, K. Watanabe, The classification of quotient singularities which are complete intersections. Proc CIME Lecture Notes, 1092, Springer Verlag. Berlin. Zbl0577.14039MR775879
  20. [R] D. Rotillon, Groupes linéaires finis de degré trois et anneaux d'invariants intersection complète, Preprint Univ. Paris-Nord (1981). 
  21. [SGA1] A. Grothendieck, Séminaire Géométrie Algébrique. Tome I (1961). 
  22. [SGA2] A. Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux, North Holland (1968). MR244270
  23. [Sh, T] G.C. Shepard, J.A. Todd, Finite unitary reflection groupsCan J of Math. 6 (1954), 274-304. Zbl0055.14305MR59914
  24. [Sp] T.A. Springer, Invariant Theory, Lecture Notes in Math., 585, Springer (1977). Berlin. Zbl0346.20020
  25. [St1] R. Stanley, Relative invariants of finite groups generated by pseudoreflections, J of Algebra49 (1977) 134-48. Zbl0383.20029MR460484
  26. [St2] R. Stanley, Hilbert functions of graded algebras, Adv. in Math., 28 (1978) 57-83. Zbl0384.13012MR485835
  27. [St3] R. Stanley, Invariants of finite groups and their applications to combinatoires, Bull. A.M.S.1 (1979) 475-511. Zbl0497.20002MR526968
  28. [Wal] D.B. Wales, Linear groups of degree n containing an involution with two eigenvalues -1, J of Algebra53 (1978) 58-67. Zbl0404.20034MR480770
  29. [W1] K. Watanabe, Certain invariant subrings are Gorenstein II, Osaka J. Math.11, (1974), 379-388 Zbl0292.13008MR354646
  30. [W2] K. Watanabe, Invariant subrings which are complete intersection I (invariants of finite groups : abelian case)Nagoya J. of Math.77 (1980) 89-9 . MR556310
  31. [W-R] K. Watanabe, D. Rotillon, Invariant subrings of C[X,Y,Z] which are complete intersections, Manuscripta Math.39 (1982), 339-57. Zbl0515.20030MR675549

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.