Anneaux d'invariants de groupes finis Intersections complètes
Publications mathématiques et informatique de Rennes (1985)
- Volume: 4, Issue: 4, page 40-70
Access Full Article
topHow to cite
topRotillon, Denis. "Anneaux d'invariants de groupes finis Intersections complètes." Publications mathématiques et informatique de Rennes 4.4 (1985): 40-70. <http://eudml.org/doc/274807>.
@article{Rotillon1985,
author = {Rotillon, Denis},
journal = {Publications mathématiques et informatique de Rennes},
keywords = {complete intersection; invariant theory of finite groups},
language = {fre},
number = {4},
pages = {40-70},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {Anneaux d'invariants de groupes finis Intersections complètes},
url = {http://eudml.org/doc/274807},
volume = {4},
year = {1985},
}
TY - JOUR
AU - Rotillon, Denis
TI - Anneaux d'invariants de groupes finis Intersections complètes
JO - Publications mathématiques et informatique de Rennes
PY - 1985
PB - Département de Mathématiques et Informatique, Université de Rennes
VL - 4
IS - 4
SP - 40
EP - 70
LA - fre
KW - complete intersection; invariant theory of finite groups
UR - http://eudml.org/doc/274807
ER -
References
top- [Bl] H. Blichfeldt, Finite Collineation Groups, University of Chicago Press, 1917.
- [Br] R. Brauer, Uber endliche lineare Gruppen von Prinzahlgrad, Math. Annalen169, 73-96 (1967). Zbl0166.28903MR206088
- [Co] A.M. Cohen, Finite complex reflection groups, Ann. Sci. Ecole Norm. Sup.9, 379-436 (1976). Zbl0359.20029MR422448
- [G.W] S. Goto, K. Watanabe, The embedding dimension and multiplicities of rational singularities which are IC. To appear.
- [Go1] N.L. Gordeev, Invariants of linear groups generated by matrices with two non unit eigenvalues, J of Soviet Math., 1984, 2919-27. Zbl0548.20030
- [Go2] N.L. Gordeev, On the Stanley Conjecture and the classification of finite groups whose algebra of invariants is a complete intersectionJ of Soviet Math. Doklady26, 3, 722-24 (1982). Zbl0529.20028MR685834
- [H1] W.G. Huffmann, Linear groups containing an element with an eigenspace of codimension two, J of Algebra34, 260-87 (1975). Zbl0302.20037MR401936
- [H2] W.G. Huffmann, Imprimitive linear groups generated by elements containing an eigenspace of codimension two, J of Algebra63, (1980) 499-513. Zbl0435.20030MR570727
- [H.S] W.G. Huffmann, N.J. Sloane, Most primitive groups have messy invariants, Advance in Math.32, 118-127 (1979). Zbl0421.20005MR535618
- [H.W] W.C. Huffmann, D.B. Wales, Linear groups of degree n containing an element with exactly n-2 equel eigenvalues, J linear and Multilinear Algebra, 3, 53-59 (1975). Zbl0326.20038MR401937
- [K.W] V. Kac, K. Watanabe, Finite linear groups whose rings of invariants is a complete intersection, Bull. AMS6 (1982) 221-23. Zbl0483.14002MR640951
- [L.T] J. Lipman, B. Teissier, Pseudo Rationnel local rings and a theorem of Briançon-Skoda about integral closures of idealsMichigan J of Math., 28 (1981) 97-116. Zbl0464.13005MR600418
- [M] H.H. Mitchell, Determinations of all primitive collineation groups in more then four variables which contain homologies, Am J of Math.36 (1914) 1-12. Zbl45.0253.01MR1506202JFM45.0253.01
- [N1] N. Nakajima, Relative invariants of finite groups, J of Algebra, 79, 218-34 (1982). Zbl0499.20029MR679980
- [N2] H. Nakajima, Rings of invariants of finite groups which are hypersurfaces I, J of Algebra, 80, 279-94 (1983). Zbl0524.14013MR691804
- [N3] H. Nakajima, Rings of invariants of finite groups which are hypersurface II, to appear inAdvances in Math. Zbl0626.14010MR893470
- [N4] H. Nakajima, Quotient singularities which are complete intersection, Manuscripta Math.48, 163-87 (1984). Zbl0577.14038MR753729
- [N5] H. Nakajima, Quotient complete intersections of affine spaces by finite linear groups, Preprint. Zbl0596.14038MR792768
- [N-W] H. Nakajima, K. Watanabe, The classification of quotient singularities which are complete intersections. Proc CIME Lecture Notes, 1092, Springer Verlag. Berlin. Zbl0577.14039MR775879
- [R] D. Rotillon, Groupes linéaires finis de degré trois et anneaux d'invariants intersection complète, Preprint Univ. Paris-Nord (1981).
- [SGA1] A. Grothendieck, Séminaire Géométrie Algébrique. Tome I (1961).
- [SGA2] A. Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux, North Holland (1968). MR244270
- [Sh, T] G.C. Shepard, J.A. Todd, Finite unitary reflection groupsCan J of Math. 6 (1954), 274-304. Zbl0055.14305MR59914
- [Sp] T.A. Springer, Invariant Theory, Lecture Notes in Math., 585, Springer (1977). Berlin. Zbl0346.20020
- [St1] R. Stanley, Relative invariants of finite groups generated by pseudoreflections, J of Algebra49 (1977) 134-48. Zbl0383.20029MR460484
- [St2] R. Stanley, Hilbert functions of graded algebras, Adv. in Math., 28 (1978) 57-83. Zbl0384.13012MR485835
- [St3] R. Stanley, Invariants of finite groups and their applications to combinatoires, Bull. A.M.S.1 (1979) 475-511. Zbl0497.20002MR526968
- [Wal] D.B. Wales, Linear groups of degree n containing an involution with two eigenvalues -1, J of Algebra53 (1978) 58-67. Zbl0404.20034MR480770
- [W1] K. Watanabe, Certain invariant subrings are Gorenstein II, Osaka J. Math.11, (1974), 379-388 Zbl0292.13008MR354646
- [W2] K. Watanabe, Invariant subrings which are complete intersection I (invariants of finite groups : abelian case)Nagoya J. of Math.77 (1980) 89-9 . MR556310
- [W-R] K. Watanabe, D. Rotillon, Invariant subrings of C[X,Y,Z] which are complete intersections, Manuscripta Math.39 (1982), 339-57. Zbl0515.20030MR675549
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.