Braided Groups
Recherche Coopérative sur Programme n°25 (1992)
- Volume: 43, page 107-146
Access Full Article
topHow to cite
topMajid, Shahn. "Braided Groups." Recherche Coopérative sur Programme n°25 43 (1992): 107-146. <http://eudml.org/doc/274897>.
@article{Majid1992,
author = {Majid, Shahn},
journal = {Recherche Coopérative sur Programme n°25},
keywords = {quantum groups; dual monoidal category; coadjoint action; cross products; Hopf algebra; comodules; categorical duality; quantum-gravity},
language = {eng},
pages = {107-146},
publisher = {Institut de Recherche Mathématique Avancée - Université Louis Pasteur},
title = {Braided Groups},
url = {http://eudml.org/doc/274897},
volume = {43},
year = {1992},
}
TY - JOUR
AU - Majid, Shahn
TI - Braided Groups
JO - Recherche Coopérative sur Programme n°25
PY - 1992
PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur
VL - 43
SP - 107
EP - 146
LA - eng
KW - quantum groups; dual monoidal category; coadjoint action; cross products; Hopf algebra; comodules; categorical duality; quantum-gravity
UR - http://eudml.org/doc/274897
ER -
References
top- [1] A. Connes. Non-commutative differential geometry. Technical Report62, IHES, 1986. Zbl0592.46056
- [2] B. Day. On closed categories of functors. Number 137 in Lec. Notes in Math.Springer, 1969. Zbl0367.18008MR272852
- [3] P. Deligne and J. S. Milne. Tannakian categories. Number 900 in Lec. Notes in Math.Springer, 1982. Zbl0477.14004
- [4] V. G. Drinfeld. Quantum groups. In A. Gleason, editor, Proceedings of the ICM, pages 798-820, Rhode Island, 1987. AMS. Zbl0667.16003MR934283
- [5] P. Freyd and D. Yetter. Braided compact closed categories with applications to low dimensional topology. Adv. Math., 77:156-182, 1989. Zbl0679.57003MR1020583
- [6] A. Grothendiek and J. L. Verdier. Theorie des topos et cohomologie etale des schemas (sga 4). Number 269 in Lec. Notes Math.Springer, 1972. MR463174
- [7] D. I. Gurevich. The Yang-Baxter equations and a generalization of formal Lie theory. In D. Leites, editor, Seminar on Supermanifolds, No. 4, number 24 in Stockholm Mathematics Reports, pages 33-123. 1986. Zbl0627.17006MR852270
- [8] A. Joyal and R. Street. Braided monoidal categories. Mathematics Reports86008, Macquarie University, 1986. Zbl0845.18005
- [9] A. Joyal and R. Street. The geometry of tensor calculus, I. Adv. Math., 88:55-112, 1991. Zbl0738.18005MR1113284
- [10] S. Mac Lane. Categories for the Working Mathematician. Springer, 1974. GTM vol. 5. Zbl0906.18001MR1712872
- [11] V. V. Lyubashenko. Tangles and hopf algebras in braided categories. Preprint, 1991. Zbl0823.18002MR1324033
- [12] S. Majid. Braided groups and algebraic quantum field theories. Lett. Math. Phys., 22: 167-176, 1991 ; Zbl0745.16019MR1129171
- S. Majid. Some physical applications of category theory, in C. Bartocci et al editors, Lecture Notes in Physics375:131-142, 1990. Zbl0751.17028MR1134150
- [13] S. Majid. Doubles of quasitriangular Hopf algebras. Comm. Algebra, 19:3061-3073, 1991. Zbl0767.16014MR1132774
- [14] S. Majid. Examples of braided groups and braided matrices. J. Math. Phys.32:3246- 3253, 1991. Zbl0821.16042MR1137374
- [15] S. Majid. Quantum groups and quantum probability. In L. Accardi et al, editors, Quantum Probability and Related TopicsVI, Proc. Trento, 1989. World Sci. Zbl0932.81018MR1149836
- [16] S. Majid. Rank of quantum groups and braided groups in dual form. In Proc. of the Euler Institute, October 1990. To appear. Zbl0762.17015MR1183479
- [17] S. Majid. Reconstruction theorems and rational conformal field theories, 1989. To appear Int. J. Mod. Phys. Zbl0728.17011MR1126612
- [18] S. Majid. Representations, duals and quantum doubles of monoidal categories, 1989. To appear Suppl. Rend. Circ. Mat. Palermo. Zbl0762.18005MR1151906
- [19] S. Majid. Quasitriangular Hopf algebras and Yang-Baxter equations. Int. J. Modern Physics A, 5(1):1-91, 1990. Zbl0709.17009MR1027945
- [20] S. Majid. Cross products by braided groups and bosonization, 1991. To appear J. Algebra. Zbl0807.16036MR1257312
- [21] S. Majid. Transmutation theory and rank for quantum braided groups. Preprint, DAMTP/91-10, 1991. Zbl0781.17006MR1188817
- [22] M. Makkai and R. Paré. Accessible categories: the foundations of categorical model theory. AMS1989. Zbl0703.03042MR1031717
- [23] Yu. I. Manin. Quantum groups and non - commutative geometry. Technical report, Centre de Recherches Math, Montreal, 1988. Zbl0724.17006MR1016381
- [24] B. Pareigis. Morita equivalence of module categories with tensor products. Comm. Algebra, 9:1455, 1981. Zbl0472.18005MR630319
- [25] B. Pareigis. A non-commutative non-cocommutative Hopf algebra in nature. J. Algebra, 70:356, 1981. Zbl0463.18003
- [26] D. Radford. On the quasitriangular structures of a semisimple Hopf algebra. J. Algebra, 1991. Zbl0733.16015MR1125700
- [27] N. Saavedra Rivano. Catégories tannakiennes. SpringerLect. Notes in Math, 265, 1972. Zbl0241.14008MR338002
- [28] A. Rozenberg. Hopf algebras and Lie algebras in categories with multiplication. Preprint, 1978. In Russian.
- [29] M. E. Sweedler. Hopf Algebras. Benjamin, 1969. Zbl0194.32901MR252485
- [30] K.-H. Ulbrich. On Hopf algebras and rigid monoidal categories. Israel J. Math, 72:252, 1990. Zbl0727.16029MR1098991
- [31] D. N. Yetter. Quantum groups and representations of monoidal categories. Math. Proc. Camb. Phil. Soc., 108:261, 1990. Zbl0712.17014MR1074714
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.