The contributions of Hilbert and Dehn to non-archimedean geometries and their impact on the italian school

Cinzia Cerroni

Revue d'histoire des mathématiques (2007)

  • Volume: 13, Issue: 2, page 259-299
  • ISSN: 1262-022X

Abstract

top
In this paper we investigate the contribution of Dehn to the development of non-Archimedean geometries. We will see that it is possible to construct some models of non-Archimedean geometries in order to prove the independence of the continuity axiom and we will study the interrelations between Archimedes’ axiom and Legendre’s theorems. Some of these interrelations were also studied by Bonola, who was one of the very few Italian scholars to appreciate Dehn’s work. We will see that, if Archimedes’ axiom does not hold, the hypothesis on the existence and the number of parallel lines through a point is not related to the hypothesis on the sum of the inner angles of a triangle. Hilbert himself returned to this problem giving a very interesting model of a non-Archimedean geometry in which there are infinitely many lines parallel to a fixed line through a point while the sum of the inner angles of a triangle is equal to two right angles.

How to cite

top

Cerroni, Cinzia. "The contributions of Hilbert and Dehn to non-archimedean geometries and their impact on the italian school." Revue d'histoire des mathématiques 13.2 (2007): 259-299. <http://eudml.org/doc/274904>.

@article{Cerroni2007,
abstract = {In this paper we investigate the contribution of Dehn to the development of non-Archimedean geometries. We will see that it is possible to construct some models of non-Archimedean geometries in order to prove the independence of the continuity axiom and we will study the interrelations between Archimedes’ axiom and Legendre’s theorems. Some of these interrelations were also studied by Bonola, who was one of the very few Italian scholars to appreciate Dehn’s work. We will see that, if Archimedes’ axiom does not hold, the hypothesis on the existence and the number of parallel lines through a point is not related to the hypothesis on the sum of the inner angles of a triangle. Hilbert himself returned to this problem giving a very interesting model of a non-Archimedean geometry in which there are infinitely many lines parallel to a fixed line through a point while the sum of the inner angles of a triangle is equal to two right angles.},
author = {Cerroni, Cinzia},
journal = {Revue d'histoire des mathématiques},
keywords = {David Hilbert; Max Dehn; Federico Enriques; Roberto Bonola; non-archimedean geometry},
language = {eng},
number = {2},
pages = {259-299},
publisher = {Société mathématique de France},
title = {The contributions of Hilbert and Dehn to non-archimedean geometries and their impact on the italian school},
url = {http://eudml.org/doc/274904},
volume = {13},
year = {2007},
}

TY - JOUR
AU - Cerroni, Cinzia
TI - The contributions of Hilbert and Dehn to non-archimedean geometries and their impact on the italian school
JO - Revue d'histoire des mathématiques
PY - 2007
PB - Société mathématique de France
VL - 13
IS - 2
SP - 259
EP - 299
AB - In this paper we investigate the contribution of Dehn to the development of non-Archimedean geometries. We will see that it is possible to construct some models of non-Archimedean geometries in order to prove the independence of the continuity axiom and we will study the interrelations between Archimedes’ axiom and Legendre’s theorems. Some of these interrelations were also studied by Bonola, who was one of the very few Italian scholars to appreciate Dehn’s work. We will see that, if Archimedes’ axiom does not hold, the hypothesis on the existence and the number of parallel lines through a point is not related to the hypothesis on the sum of the inner angles of a triangle. Hilbert himself returned to this problem giving a very interesting model of a non-Archimedean geometry in which there are infinitely many lines parallel to a fixed line through a point while the sum of the inner angles of a triangle is equal to two right angles.
LA - eng
KW - David Hilbert; Max Dehn; Federico Enriques; Roberto Bonola; non-archimedean geometry
UR - http://eudml.org/doc/274904
ER -

References

top
  1. [Amaldi 1911] Amaldi ( Ugo) – Roberto Bonola, Bollettino Mathesis, 3 (1911), p. 145–152. JFM43.0035.01
  2. [Avellone et al. 2002 Avellone, Brigaglia & Zappulla] Avellone ( Maurizio), Brigaglia ( Aldo) & Zappulla ( Carmela) – The Foundations of Projective Geometry in Italy from De Paolis to Pieri, Arch. Hist. Exact Sci., 56(5) (2002), p. 363–425. Zbl1032.01019MR1918541
  3. [Bettazzi 1890] Bettazzi ( Rodolfo) – Teoria delle Grandezze, Pisa: Enrico Spoerri, 1890. 
  4. [Bettazzi 1891] Bettazzi ( Rodolfo) – Osservazioni sopra l’articolo del Dr. G. Vivanti Sull’infinitesimo attuale, Rivista di Matematica, 1 (1891), p. 174–182. JFM23.0061.05
  5. [Bettazzi 1892] Bettazzi ( Rodolfo) – Sull’infinitesimo attuale, Rivista di Matematica, 2 (1892), p. 38–41. JFM24.0247.01
  6. [Bonola 1905] Bonola ( Roberto) – I teoremi del Padre Girolamo Saccheri sulla somma degli angoli di un triangolo e le ricerche di M. Dehn, Rendiconti dell’Istituto Lombardo, serie II, 28 (1905), p. 651–662. JFM36.0524.05
  7. [Bonola 1906] Bonola ( Roberto) – Geometria Non-Euclidea, Bologna: N. Zanichelli, 1906; English translation: Non-euclidean geometry. A critical and historical study of its development. English translation by H.S. Carslaw. Chicago: The Open Court 1912, reprint Dover 1955. MR70197
  8. [Bottazzini 2001] Bottazzini ( Umberto) – I geometri italiani e il problema dei fondamenti (1889–1899), Boll. Unione Mat. Ital. Sez. A Mat. Soc. Cult. (8), 4(2) (2001), p. 281–329. Zbl1194.01018MR1889273
  9. [Busulini 1969/70] Busulini ( Bruno) – La retta non-archimedea di Giuseppe Veronese, Ist. Veneto Sci. Lett. Arti Atti Cl. Sci. Mat. Natur., 128 (1969/70), p. 239–263. Zbl0341.01007MR307860
  10. [Cantor 1895] Cantor ( Georg) – Beiträge zur Begründung der transfiniten Mengenlehre, I, Mathematische Annalen, 46 (1895), p. 481–512. Zbl26.0081.01JFM26.0081.01
  11. [Cantor 1897] Cantor ( Georg) – Beiträge zur Begründung der transfiniten Mengenlehre, II, Math. Ann., 49(2) (1897), p. 207–246. Zbl28.0061.08MR1510964JFM28.0061.08
  12. [Cantù 1999] Cantù ( Paola) – Giuseppe Veronese e I Fondamenti della Geometria, Biblioteca di cultura filosofica 10, no.10, Milano: Edizioni Unicopli, 1999. Zbl1158.51300
  13. [Cerroni 2004] Cerroni ( Cinzia) – Non-Desarguian geometries and the foundations of geometry from David Hilbert to Ruth Moufang, Historia Math., 31(3) (2004), p. 320–336. Zbl1059.51002MR2079594
  14. [Dehn 1900a] Dehn ( Max) – Die Legendreschen Sätze über die Winkelsumme im Dreieck, Math. Ann., 53(3) (1900), p. 404–439. MR1511095JFM31.0471.01
  15. [Dehn 1900b] Dehn ( Max) – Über raumgleiche Polyeder, Göttinger Nachrichten, 1900, p. 345–354. Zbl31.0505.02JFM31.0505.02
  16. [Dehn 1901] Dehn ( Max) – Über den Rauminhalt, Math. Ann., 55(3) (1901), p. 465–478. MR1511157JFM32.0486.01
  17. [Dehn 1922] Dehn ( Max) – Über die Grundlagen der Geometrie und allgemeine Zahlsysteme, Math. Ann., 85(1) (1922), p. 184–194. Zbl48.0638.03MR1512061JFM48.0638.03
  18. [Dehn & Pasch 1926] Dehn ( Max) & Pasch ( Moritz) – Vorlesungen über neuere Geometrie, 2nd ed., Berlin: Verlag von Julius Springer, 1926. 
  19. [Ehrlich 2006] Ehrlich ( Philip) – The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean System of Magnitudes, Arch. Hist. Exact Sci., 60(1) (2006), p. 1–121. Zbl1086.01024MR2206281
  20. [Enriques 1900] Enriques ( Federigo) – Questioni riguardanti la geometria elementare, Bologna: N. Zanichelli, 1900. 
  21. [Enriques 1907] Enriques ( Federigo) – Prinzipien der Geometrie, in Encyklopädie der mathematischen Wissenschaften, III, Erster Teil, Erste Hälfte: Geometrie, Leipzig: Teubner, 1907, p. 1–129. JFM38.0496.01
  22. [Enriques 1911] Enriques ( Federigo) – Principes de la Géométrie, in Encyclopédie des sciences mathématiques pures et appliquées, tome III, volume I: Fondements de la Géométrie, Paris: Gauthier-Villars, 1911, p. 1–147; (French translation with revisions of [Enriques 1907]). 
  23. [Euclide d’Alexandrie 1994] Euclide d’Alexandrie – Les éléments. Vol. II, Bibliothèque d’histoire des sciences, Paris: Presses Universitaires de France, 1994. MR1304053
  24. [Freguglia 1998] Freguglia ( Paolo) – Fondamenti della Geometria a più dimensioni secondo G. Veronese, in Seminario di Geometria, Dipartimento di Matematica Università di Bologna 1996–7, pp. 253–277, Bologna: Univ. Stud. Bologna, 1998. Zbl0906.01011
  25. [Galuzzi 1980] Galuzzi ( Massimo) – Geometria algebrica e logica tra Otto e Novecento, in Micheli (G.), ed., Storia d’Italia, Annali 3, Scienza e tecnica nella cultura e nella società dal Rinascimento ad oggi, Torino: Einaudi, 1980, p. 1001–1105. 
  26. [Gillispie 1970–1990] Gillispie ( Charles C.) – Dictionary of Scientific Biography, New York: Charles Scribner’s Sons, 1970–1990; 16 vols. and 2 supp. 
  27. [Hahn 1907] Hahn ( Hans) – Über die Nichtarchimedischen Grössensysteme, Sitzungsberichte der kaiserlichen Akademie der Wissenschaften, Wien, Mathematisch-Naturwissenschaftliche Klasse, 116 (Abteilung IIa) (1907), p. 601–655. JFM38.0501.01
  28. [Hallet & Ulrich 2004] Hallet ( Michael) & Ulrich ( Majer) – David Hilbert’s Lectures on the Foundations of Geometry 1891–1902, ed. by Michael Hallett and Ulrich Majer, David Hilbert’s Foundational Lectures, vol.1, Berlin: Springer, 2004. Zbl1057.01009MR2090759
  29. [Hartshorne 2000] Hartshorne ( Robin) – Geometry: Euclid and beyond, Undergraduate Texts in Mathematics, New York: Springer, 2000. Zbl0954.51001MR1761093
  30. [Hilbert 1899] Hilbert ( David) – Grundlagen der Geometrie, in Festschrift zur Feier der Enthüllung des Gauss-Weber Denkmals in Goettingen. Hrsg. von dem Fest-Comitee, Leipzig: Teubner, 1899; réed. in [Hallet & Ulrich 2004, pp. 436–529]; fr. tr. L. Laugel, « Les principes fondamentaux de la géométrie », Annales scientifiques de l’École normale supérieure, 3e s. 17 (1900), pp. 103–209; eng. tr. E. J. Townsend, The Foundations of Geometry, Chicago: The Open Court, 1902. Zbl0651.51001JFM30.0424.01
  31. [Hilbert 1902] Hilbert ( David) – Grundlagen der Geometrie, Vorlesung an der Georg-August-Universität Göttingen, Mathematisches Institut, 1902; in [Hallet & Ulrich 2004]. Zbl0108.16202
  32. [Killing 1885] Killing ( Wilhelm) – Über die nicht-Euklidischen Raumformen, Leipzig: Teubner, 1885. 
  33. [Killing 1895–96] Killing ( Wilhelm) – Bemerkungen über Veronese’s transfiniten Zahlen, Index Lectionum, Universität Münster, 1895–96. 
  34. [Killing 1897] Killing ( Wilhelm) – Ueber transfinite Zahlen, Math. Ann., 48 (1897), p. 425–432. Zbl27.0046.04JFM27.0046.04
  35. [Klein 1871] Klein ( Felix) – Ueber die sogenannte nicht-Euklidische Geometrie, Math. Ann., 4 (1871), p. 573–625. JFM03.0231.02
  36. [Levi 1905] Levi ( Beppo) – Sur la géométrie et la trigonométrie sphérique, Enseignement mathématique, 1905, p. 193–206. JFM36.0556.05
  37. [Levi-Civita 1893] Levi-Civita ( Tullio) – Sugli infiniti ed infinitesimi attuali quali elementi analitici, Atti dell’Istituto Veneto, 7 (1893), p. 1765–1815. JFM25.0105.01
  38. [Levi-Civita 1898] Levi-Civita ( Tullio) – Sui numeri transfiniti, Atti della Reale Accademia dei Lincei, Classe di scienze fisiche matematiche e naturale, Rendiconti, Roma, Serie Va, 7 (1898), p. 91–96. JFM29.0048.02
  39. [Magnus & Moufang 1954] Magnus ( Wilhelm) & Moufang ( Ruth) – Max Dehn zum Gedächtnis, Math. Ann., 127 (1954), p. 215–227. Zbl0055.00206MR59837
  40. [Magnus 1978/79] Magnus ( Wilhelm) – Max Dehn, Math. Intelligencer, 1(3) (1978/79), p. 132–143. Zbl0399.01011MR505030
  41. [Manara 1986] Manara ( Carlo Felice) – Giuseppe Veronese ed il problema del continuo geometrico, Rend. Sem. Mat. Fis. Milano, 56 (1986), p. 99–111. Zbl0657.01010MR963608
  42. [Moufang 1933] Moufang ( Ruth) – Alternative Körper und der Satz vom vollständigen Vierseit (Dg), Abh. Math. Sem. Hamburg, 9 (1933), p. 207–222. Zbl0007.07205JFM59.0551.03
  43. [Peano 1892a] Peano ( Giuseppe) – Recenzione al volume di G. Veronese, “Fondamenti di Geometria a più dimensioni e a più specie di unità rettilinee, ecc.”, Rivista di Matematica, 2 (1892), p. 143–144. 
  44. [Peano 1892b] Peano ( Giuseppe) – Dimostrazione dell’impossibilità di segmenti infinitesimi costanti, Rivista di Matematica, 2 (1892), p. 58–62. JFM24.0068.02
  45. [Peano 1892c] Peano ( Giuseppe) – Breve replica al prof. Veronese, Palermo Rendiconti, 6 (1892), p. 160. JFM24.0483.05
  46. [Poincaré 1904] Poincaré ( Henri) – Rapport sur les travaux de M. Hilbert, Bulletin de la Société physico-mathématique de Kazan, 14 (1904), p. 10–48. 
  47. [Predella 1911] Predella ( Pilo) – Saggio di Geometria non-archimedea, Giornale di Battaglini, 49 (1911), p. 281–289. JFM42.0497.02
  48. [Predella 1912] Predella ( Pilo) – Saggio di Geometria non-archimedea (Nota II), Giornale di Battaglini, 50 (1912), p. 161–171. Zbl43.0563.01JFM43.0563.01
  49. [Saccheri 1733] Saccheri ( Giovanni Girolamo) – Euclides ab omni naevo vindicatus sive conatus geometricus quo stabiliuntur prima ipsa universale geometriae principia, Milano: Paolo Antonio Montano, 1733. 
  50. [Schoenflies 1897a] Schoenflies ( Arthur Moritz) – Transfinite Zahlen, das Axiom des Archimedes und die projective Geometrie, Jahresbericht der Deutschen Mathematiker-Vereinigung, 5 (1897), p. 75–81. Zbl28.0415.02JFM28.0415.02
  51. [Schoenflies 1897b] Schoenflies ( Arthur Moritz) – Sur les nombres transfinis de Mr. Veronese, Rendiconti dell’Accademia Nazionale dei Lincei, 5(6) (1897), p. 362–368. JFM28.0063.02
  52. [Schoenflies 1906] Schoenflies ( Arthur Moritz) – Ueber die Moeglichkeit einer projektiven Geometrie bei transfiniter (nicht archimedischer) Massbestimmung, Jahresbericht der Deutschen Mathematiker Vereinigung, 15 (1906), p. 26–41. JFM37.0487.04
  53. [Siegel 1965] Siegel ( Carl Ludwig) – Zur Geschichte des Frankfurter mathematischen Seminars, Frankfurt am Main: Victorio Klostermann, 1965; reprinted in C. L. Siegel, Gesammelte Abhandlungen 3, Berlin: Springer, 1966, pp. 462–474. 
  54. [Stolz 1883] Stolz ( Otto) – Zur Geometrie der Alten, insbesondere über ein Axiom des Archimedes, Math. Ann., 22(4) (1883), p. 504–519. Zbl15.0022.02MR1510241JFM15.0022.02
  55. [Stolz 1888] Stolz ( Otto) – Ueber zwei Arten von unendlich kleinen und von unendlich grossen Groessen, Math. Ann., 31(4) (1888), p. 601–604. Zbl20.0273.01MR1510502JFM20.0273.01
  56. [Stolz 1891] Stolz ( Otto) – Ueber das Axiom des Archimedes, Math. Ann., 39(1) (1891), p. 107–112. Zbl23.0534.02MR1510694JFM23.0534.02
  57. [Toepell 1986] Toepell ( Michael) – Über die Entstehung von David Hilberts ,,Grundlagen der Geometrie“, Studien zur Wissenschafts-, Sozial- und Bildungsgeschichte der Mathematik, vol.2, Göttingen: Vandenhoeck & Ruprecht, 1986. Zbl0602.01013MR874532
  58. [Veronese 1890] Veronese ( Giuseppe) – Il continuo rettilineo e l’assioma V di Archimede, Memorie della Reale Accademia dei Lincei, Atti della Classe di scienze naturali, fisiche e matematiche, 4(6) (1890), p. 603–624. Zbl22.0541.01JFM22.0541.01
  59. [Veronese 1891] Veronese ( Giuseppe) – Fondamenti di geometria a più dimensioni e a più specie di unità rettilinee esposti in forma elementare. Lezioni per la Scuola di magistero in Matematica, Padova: Tipografia del Seminario, 1891. Zbl23.0538.03JFM24.0483.01
  60. [Veronese 1892] Veronese ( Giuseppe) – Osservazioni sopra una dimostrazione contro il segmento infinitesimo attuale, Rendiconti del Circolo Matematico di Palermo, 6 (1892), p. 73–76. Zbl24.0247.02JFM24.0247.02
  61. [Veronese 1896] Veronese ( Giuseppe) – Intorno ad alcune osservazioni sui segmenti infiniti o infinitesimi attuali, Math. Ann., 47(2–3) (1896), p. 423–432. Zbl27.0370.01MR1510910JFM27.0370.01
  62. [Veronese 1897] Veronese ( Giuseppe) – Sul postulato della continuità, Rendiconti della Reale Accademia dei Lincei, 5(6) (1897), p. 161–167. Zbl28.0415.01JFM28.0415.01
  63. [Veronese 1898] Veronese ( Giuseppe) – Segmenti e numeri transfiniti, Rendiconti della Reale Accademia dei Lincei, 5(7) (1898), p. 79–87. JFM29.0408.01
  64. [Veronese 1905] Veronese ( Giuseppe) – La geometria non archimedea. Una questione di priorità, Rendiconti della Reale Accademia dei Lincei, 14 (1905), p. 347–351. Zbl36.0523.02JFM36.0523.02
  65. [Veronese 1909] Veronese ( Giuseppe) – La geometria non-Archimedea, Atti del 4o Congresso internazionale dei Matematici, Roma 1908, vol. 1, 1909, p. 197–208; French translation in Bullettin des sciences mathématiques (2), 33 (1909), pp. 186–204. JFM40.0526.03
  66. [Viti 1911] Viti ( Rodolfo) – In memoria di Roberto Bonola, Bollettino di Matematica, I-4 (1911), p. 79–89. 
  67. [Vivanti 1891a] Vivanti ( Giulio) – Sull’infinitesimo attuale, Rivista di matematica, 1 (1891), p. 135–153. JFM23.0061.04
  68. [Vivanti 1891b] Vivanti ( Giulio) – Ancora sull’infinitesimo attuale, Rivista di matematica, 1 (1891), p. 248–255. JFM23.0062.01
  69. [Vladimirov et al. 1994 Vladimirov, Volovich & Zelenov] Vladimirov ( Vasilii S.), Volovich ( Igor S.) & Zelenov ( E.L.) – p -adic Analysis and Mathematical Physics, Series on Soviet and East European Mathematics, Moscow: VO “Nauka”, 1994; vol. 1, Cachan: Libr. Lavoisier. Zbl0812.46076
  70. [Wagner 1937] Wagner ( Walter) – Über die Grundlagen der projektiven Geometrie und allgemeine Zahlsysteme, Math. Ann., 113(1) (1937), p. 528–567. Zbl0015.17002MR1513106
  71. [Weil 1992] Weil ( André) – The Apprenticeship of a Mathematician, Basel: Birkhäuser, 1992. MR1139519

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.