Quasi-bigèbres jacobiennes
Recherche Coopérative sur Programme n°25 (1992)
- Volume: 43, page 103-106
Access Full Article
topHow to cite
topReferences
top- [D] V. G. Drinfeld, Quasi-Hopf algebras, Algebra i Analiz1 (6) (1989) 114-148, résumé en anglais, Quasi-Hopf algebras and Knizhnik-Zamolodchikov equations, Acad. Sci. Ukr. preprint, ITP-89-43E (1989), trad, anglaise dans Leningrad Math. J.1 (6) (1990) 1419-1457. MR1047964
- [YKS1] Y. Kosmann-Schwarzbach, From "Quantum groups" to "quasi-quantum groups", Symmetries in Science V, Algebraic systems, their representations, realizations and physical applications (Schloss Hofen, Austria, August 1990) B. Gruber, L. C. Biedenharn and H. D. Doebner eds., Plenum Press, New York1991, 369-393. MR1143601
- [YKS2] Y. Kosmann-Schwarzbach, (a) Grand crochet, crochets de Schouten et cohomologies d'algèbres de Lie, Comptes rendus Acad Sci.Paris312, série 1 (1991) 123-126 Zbl0726.17029MR1086516
- Y. Kosmann-Schwarzbach (b) Champs affines de multivecteurs sur les groupes de Lie, ibid. 233-236 Zbl0726.17030MR1089704
- Y. Kosmann-Schwarzbach (c) Quasi-bigèbres de Lie et groupes de Lie quasi-Poisson, ibid. 391-394. Zbl0712.22012MR1096618
- [YKS3] Y. Kosmann-Schwarzbach, Jacobian quasi-bialgebras and quasi-Poisson Lie groups, Mathematical Aspects of classical field theory (Seattle, Washington, July 1991), M. J. Gotay, J. E. Marsden and V. E. Moncrief eds., Contemporary Mathematics, American Mathematical Society, à paraître. Zbl0847.17020MR1188453
- [C] P. Cartier, Développements récents sur les groupes de tresses. Applications à la topologie et à l'algèbre, Séminaire Bourbaki, exposé n° 716, novembre 1979. Zbl0737.57001
- [S] J. D. Stasheff, Drinfeld's quasi-Hopf algebras and beyond, Proc. of the Conference on deformation theory with applications to physics (Amherst, MA, June 1990), M. Gerstenhaber and J. D. Stasheff eds., Contemporary Mathematics, American Mathematical Society, à paraître. Zbl0784.17027
- [DPR] R. Dijkgraaf, V. Pasquier and P. Roche, Quasi-Hopf algebras, group cohomology and orbifold models, Nucl. Phys. B (Proc. Suppl.)18B (1990) 60-72. Zbl0957.81670MR1128130
- [M] Sh. Majid, (a) Tannaka-Krein theorem for quasi Hopf algebras and other results. Proc. of the Conference on deformation theory with applications to physics (Amherst, MA, June 1990), M. Gerstenhaber and J. D. Stasheff eds., Contemporary Mathematics, American Mathematical Society, à paraître, Zbl0788.17012MR1187289
- Sh. Majid (b) Quasi-quantum groups as internal symmetries of topological quantum field theories, Lett. Math. Physics22 (2) (1991) 83-90. Zbl0746.17008MR1122044