Développements récents sur les groupes de tresses. Applications à la topologie et à l'algèbre

Pierre Cartier

Séminaire Bourbaki (1989-1990)

  • Volume: 32, page 17-67
  • ISSN: 0303-1179

How to cite

top

Cartier, Pierre. "Développements récents sur les groupes de tresses. Applications à la topologie et à l'algèbre." Séminaire Bourbaki 32 (1989-1990): 17-67. <http://eudml.org/doc/110124>.

@article{Cartier1989-1990,
author = {Cartier, Pierre},
journal = {Séminaire Bourbaki},
keywords = {braid groups; number theory; statistical mechanics; quantum field theory; representations of braid groups; colored braids; cablings; link polynomials; quantum groups; modular Hopf algebras; triangulated Hopf algebras},
language = {fre},
pages = {17-67},
publisher = {Société Mathématique de France},
title = {Développements récents sur les groupes de tresses. Applications à la topologie et à l'algèbre},
url = {http://eudml.org/doc/110124},
volume = {32},
year = {1989-1990},
}

TY - JOUR
AU - Cartier, Pierre
TI - Développements récents sur les groupes de tresses. Applications à la topologie et à l'algèbre
JO - Séminaire Bourbaki
PY - 1989-1990
PB - Société Mathématique de France
VL - 32
SP - 17
EP - 67
LA - fre
KW - braid groups; number theory; statistical mechanics; quantum field theory; representations of braid groups; colored braids; cablings; link polynomials; quantum groups; modular Hopf algebras; triangulated Hopf algebras
UR - http://eudml.org/doc/110124
ER -

References

top
  1. [1] E. Artin - Collected papers (édités par S. Lang et J. Tate), Addison-Wesley, 1965. [Voir en particulier la partie consacrée à la Topologie (p. 416-498) qui contient les articles célèbres : Theorie der Zöpfe (1925), Theory of braids (1947), Braids and permutations (1947).] MR176888
  2. [2] W. Burau - Über Zopfinvarianten, Hamburg Abh.9 (1932), p. 117-124. JFM58.0614.03
  3. [3] A.A. Markov - Über die freie Equivalenz der geschlossenen Zöpfe, Recueil Soc. Math. Moscou43 (1936), p. 73-78. Zbl0014.04202
  4. [4] R.H. Fox - Free differential calculus I : Derivations in the free group ring, Ann. of Math.57 (1953), p. 547-560. Zbl0050.25602MR53938
  5. [5] E. Fadell and L. Neuwirth - Configuration spaces, Math. Scand.10 (1962), p. 111-118. Zbl0136.44104MR141126
  6. [6] R.H. Fox and L. Neuwirth - The braid groups, Math. Scand.10 (1962), p. 119-126. Zbl0117.41101MR150755
  7. [7] K. Reidemeister - Knotentheorie, Erg. Math. Vol. 1, Springer (1932). Zbl0005.12001
  8. [8] R.H. Crowell and R.H. Fox - Introduction to knot theory, Ginn Co. (1963) (réimprimé dans GTM, vol. 57, Springer (1977)). Zbl0362.55001MR445489
  9. [9] L. Neuwirth - Knot groups, Annals Math. Studies56, Princeton Univ. Press (1965). Zbl0184.48903MR176462
  10. [10] W. Magnus, A. Karass, D. Solitar - Combinatorial group theory, Interscience/Wiley (1966). Zbl0138.25604
  11. [11] J. Birman - Braids, links and mapping class groups, Annals Math. Studies82, Princeton Univ. Press (1974). Zbl0305.57013MR375281
  12. [12] J. Rolfsen - Knots and links, Publish or Perish (1976). Zbl0339.55004MR515288
  13. [13] L. Kauffman - Formal knot theory, Math. Notes30, Princeton Univ. Press (1983). Zbl0537.57002MR712133
  14. [14] G. Burde and H. Zieschang - Knots, W. de Gruyter (1985). Zbl0568.57001MR808776
  15. [15] A. Gramain - Rapport sur la théorie classique des nœuds (1ère partie), Sém. Bourbaki, exp. n° 485, juin 1976, Springer, Lect. Notes Math.567 (1977), p. 222-237. Zbl0342.57009
  16. [16] A. Douady - Nœuds et structures de contact en dimension 3 [d'après D. Bennequin], Sém. Bourbaki, exp. n° 604 (février 1983), Astérisque105-106, 1983, p. 129-148. Pour terminer, mentionnons un ouvrage récent explorant la plupart des aspects liés aux groupes de tresses : Zbl0522.53034
  17. [17] J. Birman and A. Libgober (éditeurs) - Braids, Proceedings of a Research Conference, Contemporary Math. vol. 78, American Math. Soc. (1988). MR975074
  18. [1] S. Maclane - Natural associativity and commutativity, Rice Univ. Studies, 49 (1963), p. 28-46. Zbl0244.18008MR170925
  19. [2] S. Eilenberg and G.M. Kelly - Closed categories, in Proc. Conf. Categorical Algebra, Springer (1966). Zbl0192.10604MR225841
  20. [3] S. Maclane - Categories for the working mathematician, GTM vol. 5, Springer (1974). Zbl0705.18001MR1712872
  21. [4] G.M. Kelly and M.L. Laplaza - Coherence for compact closed categories, J. Pure Appl. Alg.19 (1980), p. 193-213. Zbl0447.18005MR593254
  22. [5] T. Tannaka - Über den Dualitätssatz der nicktkommutativen topologischen Gruppen, Tohoku Math. J.45 (1939), p. 1-12. JFM64.0362.01
  23. [6] M.G. Krein - A principle of duality for a bicompact group and a square block algebra, Dokl. Akad. Nauk SSSR69 (1949), p. 725-728. MR33809
  24. [7] M. Takesaki - A characterization of group algebras as a converse of Tannaka-Stinespring-Tatsuuma duality theorem, Amer. J. Math.91 (1969), p. 529-564. Zbl0182.18103MR244437
  25. [8] S. Doplicher and J. Roberts - Duals of compact Lie groups realized in the Cuntz algebras and their actions on C*-algebras, J. Funct. Anal.74 (1987), p. 96-120. Zbl0619.46053MR901232
  26. [9] S. Doplicher and J. Roberts - Endomorphisms of C*-algebras, cross products and duality for compact groups, Ann. of Math.130 (1989), p. 78-119. Zbl0702.46044MR1005608
  27. [10] S. Doplicher and J. Roberts - A new duality theory for compact groups, Invent. Math.98 (1989), p. 157-218. Pour une extension dans le cas des groupes quantiques : Zbl0691.22002MR1010160
  28. [11] P. Ghez, R. Lima and J. Roberts - W*-categories, Pacific J. Math.120 (1985), p. 79-109. Zbl0609.46033MR808930
  29. [12] S.L. Woronowicz - Duality in the C*-algebra theory, Proc. Int. Cong. Math., Varsovie1983, vol. 2, p. 1347-1350. Zbl0584.46046MR804783
  30. [13] S.L. Woronowicz - Compact matrix pseudo-groups, Comm. Math. Phys.111 (1987), p. 613-665. Zbl0627.58034MR901157
  31. [14] S.L. Woronowicz - Tannaka-Krein duality for compact matrix pseudo-groups. Twisted SU(N), Invent. Math.93 (1988), p. 35-76. Zbl0664.58044MR943923
  32. [15] C. Chevalley - Théorie des groupes de Lie, tome II : groupes algébriques, Hermann (1951). Zbl0186.33104MR51242
  33. [16] P. Cartier - Dualité de Tannaka et algèbres de Lie, C.R. Acad. Sci. Paris, 242 (1956), p. 322-325. Zbl0070.02506MR75536
  34. [17] S. Saavedra - Catégories tannakiennes, Lect. Notes Math. vol. 265, Springer (1972). MR338002
  35. [18] P. Deligne et J.S. Milne - Tannakian categories in Hodge cycles, Motives and Shimura varieties, Lect. Notes Math. vol. 900, Springer (1982). Zbl0477.14004MR654325
  36. [19] P. Deligne - Catégories tannakiennes, in Grothendieck's Festschrift, Prog. in Math., Birkhäuser (1990), à paraître. Zbl0727.14010MR1106898
  37. [1] V. Jones - Index for subfactors, Invent. Math.72 (1983), p. 1-25. Zbl0508.46040MR696688
  38. [2] V. Jones - A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc.12 (1985), p. 103-112. Zbl0564.57006MR766964
  39. [3] V. Jones - Braid groups, Hecke algebras and type II1 factors, in "Geometric methods in operator algebras", Proc. U.S.-Japan Symposium, Wiley, 1986, p. 242-273. Zbl0659.46054MR866500
  40. [4] V. Jones - On a certain value of the Kauffman polynomial, Comm. Math. Phys. Zbl0695.57003MR1022523
  41. [5] V. Jones - Hecke algebra representations of braid groups and link polynomials, Ann. of Math.126 (1987), p. 335-388. Zbl0631.57005MR908150
  42. [6] V. Jones - Notes on subfactors and statistical mechanics, in "Braid group, knot theory and statistical mechanics" (C.N. Yang et M.L. Ge, éditeurs), World Scientific, 1989, p. 1-25. Zbl0725.46038MR1062421
  43. [7] A. Ocneanu - Quantized groups, string atgebras and Galois theory for algebras, prépublication Penn. State Univ., 1985. 
  44. [8] A. Ocneanu - A polynomial invariant for knots : a combinatorial and an algebraic approach, à paraître. 
  45. [9] H. Wenzl - Representations of Hecke algebras and subfactors, Thèse, Univ. of Pennsylvania, 1985. 
  46. [10] H. Wenzl - Hecke algebras of type An and subfactors, Invent. Math.92 (1988), p. 349-383. Zbl0663.46055MR936086
  47. [11] H. Wenzl - Braid group representations and the quantum Yang-Baxter equation, à paraître. Zbl0735.57004
  48. [12] P. Freyd, D. Yetter, J. Hoste, W. Lickorish, K. Millett, A. Ocneanu - A new polynomial invariant of knots and links, Bull. Amer. Math. Soc.12 (1985), p. 239-246. Zbl0572.57002MR776477
  49. [13] A. Connes - Indice des sous-facteurs, algèbres de Hecke et théorie des nœuds, Sém. Bourbaki, exp. n° 647, juin 1985, Astérisque133-134 (1986), p. 289-308. Zbl0597.57005
  50. [14] F. Goodman, P. de la Harpe et V. Jones - Coxeter-Dynkin diagrams and towers of algebras, M.S.R.I. Publ. vol. 14, Springer (1989). Zbl0698.46050
  51. [15] P. de la Harpe, M. Kervaire et C. Weber - On the Jones polynomial, Ens. Math.32 (1986), p. 271-335. Zbl0622.57002MR874691
  52. [16] P. Vogel - Représentations et traces des algèbres de Hecke, polynôme de Jones-Conway, Ens. Math.34 (1988), p. 333-356. Zbl0686.57003MR979646
  53. [17] P.N. Hoefsmit - Representations of Hecke algebras of finite groups with BN pairs of classical type, Thèse, Univ. of British Columbia, 1974. 
  54. [18] M. Atiyah - Topological quantum field theories, Publ. I.H.E.S.68 (1988), p. 175-186. Zbl0692.53053MR1001453
  55. [19] N. Reshetikhin and V. Turaev - Invariants of 3-manifolds via link polynomial and quantum groups, à paraître. Zbl0725.57007
  56. [20] E. Witten - Quantum field theory and the Jones polynomial, Comm. Math. Phys.121 (1989), p. 351-399. Zbl0667.57005MR990772
  57. [1] V. Drinfeld - Hopf algebras and the quantum Yang-Baxter equation, Sov. Math. Dokl.32 (1985), p. 254-258. Zbl0588.17015MR802128
  58. [2] V. Drinfeld - Quantum groups, Proc. Int. Cong. Math., Berkeley1986, vol. 1, p. 798-820. Zbl0667.16003MR934283
  59. [3] J.-L. Verdier - Groupes quantiques [d'après V. Drinfeld], Sém. Bourbaki, exp. n° 685, juin 1987, Astérisque152-153 (1987), p. 305-319. Sur les représentations des groupes quantiques : Zbl0645.16006MR936861
  60. [4] J. Jimbo - A q-analogue of U(gl(N + 1)), Hecke algebras and the Yang-Baxter equation, Lett. Math. Phys.11 (1986), p. 247-252. Zbl0602.17005MR841713
  61. [5] A. Kirillov and N. Reshetikhin - Representations of the algebra Uq(sl(2)), q-orthogonal polynomials and invariants of links, LOMI preprint, Leningrad, 1988. MR977004
  62. [6] G. Lusztig - Quantum deformations of certain simple modules over enveloping algebras, Adv. Math.70 (1988), p. 237-249. Zbl0651.17007MR954661
  63. [7] M. Rosso - Finite dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra, Comm. Math. Phys.117 (1988), p. 581-593. [Corrections dans la thèse de l'auteur.] Zbl0651.17008MR953821
  64. [8] V. Drinfeld - Sur les algèbres de Hopf presque cocommutatives, à paraître dans "Algebra and Analysis", Leningrad, 1989 (en russe). 
  65. [9] V. Drinfeld - Quasi-algèbres de Hopf, Algebra and Analysis, vol. 1, n° 2 (1989), p. 30-46 (en russe). MR1091757
  66. [10] N. Reshetikhin - Quantized universal enveloping algebras, the Yang-Baxter equation and invariants of links, I, II, LOMI preprint, Léningrad, 1988. 
  67. [11] N. Reshetikhin - Algèbres de Hopf quasi-triangulaires et invariants des nœuds, Algebra and Analysis, vol. 1, n° 2 (1989), p. 169-188 (en russe). Zbl0715.17016
  68. [12] N. Reshetikhin, L. Takhtadjan et L. Faddeev - Groupes de Lie quantiques et algèbres de Lie, Algebra and Analysis, vol. 1, n° 2 (1989), p. 178-205 (en russe). Zbl0715.17015
  69. [13] V. Turaev - The Yang-Baxter equation and invariants of links, Invent. Math.92 (1988), p. 527-553. Zbl0648.57003MR939474
  70. [14] V. Turaev - Algebra of loops on surfaces, algebra of knots, and quantization, LOMI preprint, Léningrad, 1988. Référence supplémentaire : MR1062423
  71. [15] C.M. Ringel - Hall algebras and quantum groups, à paraître (Bielefeld, RFA). Zbl0735.16009
  72. [1] V.I. Arnold - The cohomology ring of the colored braid group, Mat. Zametki5 (1969), p. 227-231. Zbl0277.55002MR242196
  73. [2] V.I. Arnold - Topological invariants of algebraic functions II, Funct. Anal. Appl.4 (1970), p. 91-98. Zbl0239.14012MR276244
  74. [3] E. Brieskorn - Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe, Invent. Math.12 (1971), p. 57-61. Zbl0204.56502MR293615
  75. [4] E. Brieskorn - Sur les groupes de tresses [d'après V.I. Arnold], Sém. Bourbaki, exp. n° 401, novembre 1971, Springer, Lect. Notes Math.317 (1973), p. 21-44. Zbl0277.55003MR422674
  76. [5] P. Cartier - Arrangements d'hyperplans : un chapitre de Géométrie combinatoire, Sém. Bourbaki, exp. n° 582, novembre 1980, Springer, Lect. Notes Math.901 (1982), p. 1-22. Zbl0483.51011
  77. [6] F.A. Garside - The braid groups and other groups, Quart. J. Math. Oxford20, (1969), p. 235-254. Zbl0194.03303MR248801
  78. [7] E. Brieskorn and K. Saito - Artin-Gruppen und Coxeter-gruppen, Invent. Math.17, (1972), p. 245-271. Zbl0243.20037MR323910
  79. [8] P. Deligne - Les immeubles des groupes de tresses généralisés, Invent. Math.17, (1972), p. 273-302. Zbl0238.20034MR422673
  80. [9] M. Falk and R. Randell - Pure braid groups and products of free groups, in "Braids", Contemporary Math., Amer. Math. Soc. (1988), vol. 78, p. 217-228. Zbl0669.20028MR975081
  81. [1] P. Cartier - Jacobiennes généralisées, monodromie unipotente et intégrales itérées, Sém. Bourbaki, exp. n° 687, novembre 1987, Astérisque161–162 (1988), p. 31-52. Voici quelques références complétant la bibliographie de cet exposé : Zbl0688.14036
  82. [2] A.A. Belavin and V. Drinfeld - Solution of the classical Yang-Baxter equation for simple Lie algebras, Funct. Anal. Appl.16 (1982), p. 1-29. Zbl0511.22011MR674005
  83. [3] T. Kohno - Homology of a local system on the complement of hyperplanes, Proc. Japan Acad. Sci.62, série A (1986), p. 144-147. Zbl0611.55005MR846350
  84. [4] T. Kohno - One-parameter family of linear representations of Artin's braid groups, Adv. Stud. in Pure Math.12 (1987), p. 189-200. Zbl0654.20037MR948243
  85. [5] T. Kohno - Linear representations of braid groups and classical Yang-Baxter equations, in "Braids", Contemporary Math., Amer. Math. Soc. (1988), vol. 78, p. 339-363. Zbl0661.20026MR975088
  86. [6] A.B. Givental and V.V. Shekhtman - Monodromy groups and Hecke algebras, Usp. Math. Nauk12 n° 4 (1987), p. 138- . 
  87. [7] K. Aomoto - A construction of integrable differential system associated with braid groups, in "Braids", Contemporary Math., Amer. Math. Soc. (1988), vol. 78, p. 1-11. Zbl0671.58016MR975075
  88. [8] A.B. Givental - Twisted Picard-Lefschetz formulas, Funct. Anal. Appl.22 (1988), p. 10-18. Zbl0665.32011MR936695
  89. [9] A.A. Belavin, A.N. Polyakov and A.B. Zamolodchikov - Infinite dimensional symmetries in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984), p. 333-380. Zbl0661.17013MR757857
  90. [10] V.G. Knizhnik and A.B. Zamolodchikov - Current algebras and Wess-Zumino models in two dimensions, Nucl. Phys. B 247 (1984), p. 83-103. Zbl0661.17020MR853258
  91. [11] A. Tsuchiya and Y. Kanie - Vertex operators in conformal field theory on P1 and monodromy representations of braid group, Adv. Studies in Pure Math.12 (1988), p. 297-372. Zbl0661.17021MR972998
  92. [1] C.N. Yang and M.L. Ge (éditeurs) - Braid group, knot theory and statistical mechanics, Adv. Series Math. Phys. vol. 9, World Scientific (1989). Zbl0716.00010MR1062420
  93. [2] M.L. Ge and N.C. Song (éditeurs) - Conformal field theory and braid group (Nankai lectures in mathematical physics, 1988), World Scientific (1989). 
  94. [3] L. Kauffman - Statistical mechanics and the Jones polynomial, in "Braids", Contemporary Math., Amer. Math. Soc. (1988), vol. 78, p. 263-297. Zbl0664.57002MR975085
  95. [4] L. Kauffman - New invariants in the theory of knots, Astérisque163-164 (1988), p. 137-219. Zbl0673.57007MR999974
  96. [5] L. Kauffman - Knots, abstract tensors and the Yang-Baxter equation, prépublication IHES/M/89/24 (avril 1989). MR1146944
  97. [6] R.J. Baxter - Exactly solved models in statistical mechanics, Acad. Press (1982). Zbl0723.60120MR690578
  98. [7] F.Y. Wu - The Potts model, Rev. Mod. Phys. vol. 54, n° 1, Janvier 1982. MR641370
  99. [8] R. Penrose - Applications of negative dimensional tensors, in Comb. Math. and its Appl. (Welsch éditeur), Acad. Press (1971). Zbl0216.43502MR281657
  100. [9] L. Kauffman - State models and the Jones polynomial, Topology26 (1987), p. 395-407. Zbl0622.57004MR899057
  101. [10] V. Jones - On knot invariants related to statistical mechanics models, Pac. J. Math.138 (1989), p.. Zbl0695.46029
  102. [11] M. Rosso - Groupes quantiques et modèles à vertex de V. Jones en théorie des nœuds, C.R. Acad. Sci. Paris, Série I, vol. 307 (1988), p. 207-210. Zbl0651.17009
  103. [1] V. Dotsenko and V. Fateev - Conformal algebra and multipoint correlation functions in 2D statistical mechanics, Nucl. Phys. B240 (1984), p. 312-. MR762194
  104. [2] J. Fröhlich - Statistics of fields, the Yang-Baxter equation and the theory of braids and links, Cargèse lectures1987, G.'t Hooft (éditeur), Plenum Press (1988). MR1008276
  105. [3] J. Fröhlich - Statistics and monodromy in two- and three-dimensional quantum field theory, in "Differential geometrical methods in mathematical physics", K. Bleuler et M.Werner (éditeurs), Dordrecht (1988). MR981379
  106. [4] K.H. Rehren and B. Shroer - Einstein causality and Artin braids, prépublication, Freie Universität Berlin, 1988. 
  107. [5] J. Fröhlich and C. King - Two-dimensional conformal field theory and three-dimensional topology, prépublication ETH/TH/89-9, Zürich, 1989. MR1028434
  108. [6] G. Felder, J. Fröhlich and G. Keller - Braid matrices and structure constants for minimal conformal models, Comm. Math. Phys.124 (1989), p. 647-664. Zbl0696.17009MR1014118
  109. [7] J. Fröhlich, G. Gabbiani and P.A. Marchetti - Braid statistics in three-dimensional local quantum theory, in the Proceedings of the Banff Summer School in Theoretical physics (août 1989) on "Physics, Geometry and Topology", à paraître. Zbl0732.53076
  110. [1] A. Grothendieck - Esquisse d'un programme, Notes miméographiées, Univ. Montpellier, 1982. 
  111. [2] R. Coleman - Dilogarithms, regulators and p-adic L-functions, Invent. Math.69 (1982), p. 171-208. Zbl0516.12017MR674400
  112. [3] Y. Ihara - Profinite braid groups, Galois representations and complex multiplication, Ann. of Math.123 (1986), p. 3-106. Zbl0595.12003MR825839
  113. [4] Y. Ihara - On Galois representations arising from towers of coverings of P1{0,1,∞, Invent. Math.86 (1986), p. 427-459. 
  114. [5] B.H. Matzat - Konstruktive Galois Theorie, Lect. Notes Math.1284, Springer (1987). Zbl0634.12011MR1004467
  115. [6] T. Kohno and T. Oda - The lower central series of the pure braid group of an algebraic curve, Adv. Studies in Pure Math.12 (1988). Zbl0642.20035MR948244
  116. [7] P. Deligne - Le groupe fondamental de la droite projective moins trois points, in "Galois groups over Q", M.S.R.I. Publ. vol. 16, Springer, 1989. Zbl0742.14022MR1012168

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.