Form Factors, KdV and Deformed Hyperelliptic Curves

O. Babelon; D. Bernard; F. A. Smirnov

Recherche Coopérative sur Programme n°25 (1997)

  • Volume: 48, page 69-85

How to cite

top

Babelon, O., Bernard, D., and Smirnov, F. A.. "Form Factors, KdV and Deformed Hyperelliptic Curves." Recherche Coopérative sur Programme n°25 48 (1997): 69-85. <http://eudml.org/doc/274986>.

@article{Babelon1997,
author = {Babelon, O., Bernard, D., Smirnov, F. A.},
journal = {Recherche Coopérative sur Programme n°25},
language = {eng},
pages = {69-85},
publisher = {Institut de Recherche Mathématique Avancée - Université Louis Pasteur},
title = {Form Factors, KdV and Deformed Hyperelliptic Curves},
url = {http://eudml.org/doc/274986},
volume = {48},
year = {1997},
}

TY - JOUR
AU - Babelon, O.
AU - Bernard, D.
AU - Smirnov, F. A.
TI - Form Factors, KdV and Deformed Hyperelliptic Curves
JO - Recherche Coopérative sur Programme n°25
PY - 1997
PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur
VL - 48
SP - 69
EP - 85
LA - eng
UR - http://eudml.org/doc/274986
ER -

References

top
  1. [1] F.A. Smirnov, Form Factors in Completely Integrable Models of Quantum Field Theory. Adv. Series in Math. Phys.14, World Scientific, Singapore (1992) Zbl0788.46077MR1253319
  2. [2] F.A. Smirnov, Nucl. Phys. B453[FS] (1995) p.807 MR1358784
  3. [3] O. Babelon, D. Bernard, F.A. Smirnov, Quantization of Solitons and the Restricted sine-Gordon Model, hep-th/9603010 (to be published in Comm. Math. Phys.) Zbl0877.58029MR1447296
  4. [4] F.A. Smirnov, Lett.Math.Phys.36 (1996) p.267 Zbl0845.35112MR1376938
  5. [5] F.A. Smirnov, Particle-Field Duality in Sine-Gordon Theory, to be published in Proceedings of Buckow Conference (1995) Zbl0957.81530MR1412408
  6. [6] L.A. Dickey, Soliton Equations and Hamiltonian SystemsAdv. Series in Math. Phys.12, World Scientific (1991) Zbl0753.35075MR1147643
  7. [7] E.D. Belokolos, A.I. Bobenko, V.Z. Enol'skii, A.R. Its, V.B. MatveevAlgebra-geometric Approach to Non-linear Integrable Equations, Springer series in non-linear dynamics (1994) Zbl0809.35001
  8. [8] S. Novikov, S. Manakov, L. Pitaevski, V. Zakharov, Theory of Solitons. Consultants Bureau, New York, (1984). Zbl0598.35002MR779467
  9. [9] G.B. Whitham, Linear and Nonlinear Waves. Wiley-Interscience, New York (1974) Zbl0940.76002MR483954
  10. [10] H. Flashka, M.G. Forest, D.W. McLaughlin, Comm. Pure Appl. Math.XXXIII (1980) p.739 
  11. [11] I.M. Krichever, Functional Anal. Appl.22 (1988) p.200 MR961760
  12. [12] B.A. Dubrovin, S.P. Novikov, Russian Math. Surveys44:6 (1989) p.35 MR1037010
  13. [13] O. Babelon, D. Bernard, F.A. Smirnov, Null vectors in integrable field theory, hep-th/9606068, (to be published in Comm.Math.Phys.) Zbl0878.35097MR1463815

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.