An identity on partial generalized automorphisms of prime rings

Shuliang Huang

Rendiconti del Seminario Matematico della Università di Padova (2013)

  • Volume: 129, page 71-78
  • ISSN: 0041-8994

How to cite

top

Huang, Shuliang. "An identity on partial generalized automorphisms of prime rings." Rendiconti del Seminario Matematico della Università di Padova 129 (2013): 71-78. <http://eudml.org/doc/275111>.

@article{Huang2013,
author = {Huang, Shuliang},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {automorphisms; prime rings; central Lie ideals; extended centroid},
language = {eng},
pages = {71-78},
publisher = {Seminario Matematico of the University of Padua},
title = {An identity on partial generalized automorphisms of prime rings},
url = {http://eudml.org/doc/275111},
volume = {129},
year = {2013},
}

TY - JOUR
AU - Huang, Shuliang
TI - An identity on partial generalized automorphisms of prime rings
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2013
PB - Seminario Matematico of the University of Padua
VL - 129
SP - 71
EP - 78
LA - eng
KW - automorphisms; prime rings; central Lie ideals; extended centroid
UR - http://eudml.org/doc/275111
ER -

References

top
  1. [1] K. I. Beidar - W. S. Martindale - V. Mikhalev, Rings with generalized identities, Monographs and Textbooks in Pure and Applied Mathematics, 196. Marcel Dekker, Inc., New York, 1996. Zbl0847.16001MR1368853
  2. [2] M. Brešar, On the distance of the composition of two derivations to be the generalized derivations, Glasgow Math. J., 33 (1991), pp. 89–93. Zbl0731.47037MR1089958
  3. [3] C. L. Chuang, GPIs having coefficents in Utumi quotient rings, Proc. Amer. Math. Soc., 103 (3) (1988), pp. 723–728. Zbl0656.16006MR947646
  4. [4] C. L. Chuang, Differential identities with automorphisms and anti automorphisms, J. Algebra, 160 (1993), pp. 130–171. MR1237081
  5. [5] L. Carini - V. De Filippis, Commutators with power central values on a Lie ideal, Pacific J. Math., 193 (2) (2000), pp. 269–278. Zbl1009.16034MR1755818
  6. [6] C. M. Chang - Y. C. Lin, Derivations on one-sided ideals of prime rings, Tamsui Oxf. J. Math. Sci., 17 (2) (2001), pp. 139–145. MR1872475
  7. [7] V. De Filippis, Generalized derivations and commutators with nilpotent values on Lie ideals, Tamsui Oxf. J. Math. Sci., 22 (2006), pp. 167–175. MR2285443
  8. [8] B. Dhara - V. De Filippis, Notes on generalized derivations on Lie ideals in prime rings, Bull. Korean Math. Soc., 46 (3) (2009), pp. 599–605. Zbl1176.16030MR2522871
  9. [9] B. Dhara - R. K. Sharma, Derivations with power central values on Lie ideals in prime rings, Czech. Math. J., 58 (2008), pp. 147–153. Zbl1165.16303MR2402531
  10. [10] B. Dhara, Generalized derivations with vanishing power values on Lie ideals (to appear). Zbl1265.16060MR2992461
  11. [11] O. M. Di Vincenzo, On the n-th centralizers of a Lie ideal, Boll. U. M. I., 3-A (1989), pp. 77–85. Zbl0692.16022MR990089
  12. [12] J. S. Erickson - W. S. Martindale III - J. M. Osborn, Prime nonassociative algebras, Pacific J. Math., 60 (1) (1975), pp. 49–63. Zbl0355.17005MR382379
  13. [13] I. N. Herstein, Center-like elements in prime rings, J. Algebra, 60 (1979), pp. 567–574. Zbl0436.16014MR549949
  14. [14] I. N. Herstein, Topics in ring theory, Univ. of Chicago Press, Chicago, 1969. Zbl0232.16001MR271135
  15. [15] N. Jacobson, Structure of rings, Amer. Math. Soc., Providence, RI, 1964. 
  16. [16] V. K. Kharchenko, Generalized identities wtih automorphisms, Algebra i Logika, 14 (1975), pp. 132–148. 
  17. [17] C. Lanski - S. Montgomery, Lie structure of prime ring of characteristic 2, Pacific J. Math., 42 (1) (1972), pp. 117–136. Zbl0243.16018MR323839
  18. [18] W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), pp. 176–584. Zbl0175.03102MR238897
  19. [19] Y. Wang, Power-centralizing automorphisms of Lie ideals in prime rings, Comm. Algebra, 34 (2006), pp. 609–615. Zbl1093.16020MR2211941
  20. [20] X. Zhang - Y. Wang, (Right) partial generalized automorphisms of semiprime rings, Northeast Math. J., 18 (3) (2002), pp. 261–265. Zbl1035.16029MR1969018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.