On a group-theoretical generalization of the Gauss formula

Georgiana Fasolă; Marius Tărnăuceanu

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 1, page 311-317
  • ISSN: 0011-4642

Abstract

top
We discuss a group-theoretical generalization of the well-known Gauss formula involving the function that counts the number of automorphisms of a finite group. This gives several characterizations of finite cyclic groups.

How to cite

top

Fasolă, Georgiana, and Tărnăuceanu, Marius. "On a group-theoretical generalization of the Gauss formula." Czechoslovak Mathematical Journal 73.1 (2023): 311-317. <http://eudml.org/doc/299453>.

@article{Fasolă2023,
abstract = {We discuss a group-theoretical generalization of the well-known Gauss formula involving the function that counts the number of automorphisms of a finite group. This gives several characterizations of finite cyclic groups.},
author = {Fasolă, Georgiana, Tărnăuceanu, Marius},
journal = {Czechoslovak Mathematical Journal},
keywords = {Gauss formula; Euler's totient function; automorphism group; finite group; cyclic group; abelian group},
language = {eng},
number = {1},
pages = {311-317},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a group-theoretical generalization of the Gauss formula},
url = {http://eudml.org/doc/299453},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Fasolă, Georgiana
AU - Tărnăuceanu, Marius
TI - On a group-theoretical generalization of the Gauss formula
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 1
SP - 311
EP - 317
AB - We discuss a group-theoretical generalization of the well-known Gauss formula involving the function that counts the number of automorphisms of a finite group. This gives several characterizations of finite cyclic groups.
LA - eng
KW - Gauss formula; Euler's totient function; automorphism group; finite group; cyclic group; abelian group
UR - http://eudml.org/doc/299453
ER -

References

top
  1. Baishya, S. J., 10.1016/j.crma.2013.11.009, C. R., Math., Acad. Sci. Paris 352 (2014), 1-6. (2014) Zbl1292.20026MR3150758DOI10.1016/j.crma.2013.11.009
  2. Baishya, S. J., Das, A. K., 10.4171/RSMUP/132-3, Rend. Semin. Mat. Univ. Padova 132 (2014), 33-43. (2014) Zbl1314.20020MR3276824DOI10.4171/RSMUP/132-3
  3. Bidwell, J. N. S., Curran, M. J., McCaughan, D. J., 10.1007/s00013-005-1547-z, Arch. Math. 86 (2006), 481-489. (2006) Zbl1103.20016MR2241597DOI10.1007/s00013-005-1547-z
  4. Bray, J. N., Wilson, R. A., 10.1112/S002460930400400X, Bull. Lond. Math. Soc. 37 (2005), 381-385. (2005) Zbl1072.20029MR2131391DOI10.1112/S002460930400400X
  5. Bray, J. N., Wilson, R. A., 10.1515/JGT.2006.036, J. Group Theory 9 (2006), 537-547. (2006) Zbl1103.20017MR2243245DOI10.1515/JGT.2006.036
  6. Medts, T. De, Maróti, A., 10.4171/RSMUP/129-2, Rend. Semin. Mat. Univ. Padova 129 (2013), 17-33. (2013) Zbl1280.20026MR3090628DOI10.4171/RSMUP/129-2
  7. Medts, T. De, Tărnăuceanu, M., 10.36045/bbms/1225893949, Bull. Belg. Math. Soc. - Simon Stevin 15 (2008), 699-704. (2008) Zbl1166.20017MR2475493DOI10.36045/bbms/1225893949
  8. González-Sánchez, J., Jaikin-Zapirain, A., 10.1017/fms.2015.6, Forum Math. Sigma 3 (2015), Article ID e7, 11 pages. (2015) Zbl1319.20019MR3376735DOI10.1017/fms.2015.6
  9. Hillar, C. J., Rhea, D. L., 10.1080/00029890.2007.11920485, Am. Math. Mon. 114 (2007), 917-923. (2007) Zbl1156.20046MR2363058DOI10.1080/00029890.2007.11920485
  10. Isaacs, I. M., 10.1090/gsm/092, Graduate Studies in Mathematics 92. AMS, Providence (2008). (2008) Zbl1169.20001MR2426855DOI10.1090/gsm/092
  11. Miller, G. A., Moreno, H. C., 10.2307/1986409, Trans. Am. Math. Soc. 4 (1903), 398-404 9999JFM99999 34.0173.01. (1903) MR1500650DOI10.2307/1986409
  12. Sehgal, A., Sehgal, S., Sharma, P. K., 10.1080/09720529.2015.1103469, J. Discrete Math. Sci. Cryptography 19 (2016), 163-171. (2016) Zbl07509102MR3502205DOI10.1080/09720529.2015.1103469
  13. Tărnăuceanu, M., 10.1142/S1793557115500874, Asian-Eur. J. Math. 8 (2015), Article ID 1550087, 13 pages. (2015) Zbl1336.20029MR3424162DOI10.1142/S1793557115500874
  14. Tărnăuceanu, M., 10.1080/00927872.2017.1284228, Commun. Algebra 45 (2017), 4865-4868. (2017) Zbl1375.20025MR3670357DOI10.1080/00927872.2017.1284228

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.