An existence proof for the stationary compressible Stokes problem
A. Fettah; T. Gallouët; H. Lakehal
Annales de la faculté des sciences de Toulouse Mathématiques (2014)
- Volume: 23, Issue: 4, page 847-875
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topFettah, A., Gallouët, T., and Lakehal, H.. "An existence proof for the stationary compressible Stokes problem." Annales de la faculté des sciences de Toulouse Mathématiques 23.4 (2014): 847-875. <http://eudml.org/doc/275296>.
@article{Fettah2014,
abstract = {In this paper, we prove the existence of a solution for a quite general stationary compressible Stokes problem including, in particular, gravity effects. The Equation Of State gives the pressure as an increasing superlinear function of the density. This existence result is obtained by passing to the limit on the solution of a viscous approximation of the continuity equation.},
author = {Fettah, A., Gallouët, T., Lakehal, H.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {convection-diffusion; regularized problem; existence; compressible Stokes problem},
language = {eng},
number = {4},
pages = {847-875},
publisher = {Université Paul Sabatier, Toulouse},
title = {An existence proof for the stationary compressible Stokes problem},
url = {http://eudml.org/doc/275296},
volume = {23},
year = {2014},
}
TY - JOUR
AU - Fettah, A.
AU - Gallouët, T.
AU - Lakehal, H.
TI - An existence proof for the stationary compressible Stokes problem
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2014
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 4
SP - 847
EP - 875
AB - In this paper, we prove the existence of a solution for a quite general stationary compressible Stokes problem including, in particular, gravity effects. The Equation Of State gives the pressure as an increasing superlinear function of the density. This existence result is obtained by passing to the limit on the solution of a viscous approximation of the continuity equation.
LA - eng
KW - convection-diffusion; regularized problem; existence; compressible Stokes problem
UR - http://eudml.org/doc/275296
ER -
References
top- Bijl (H.) and Wesseling (P.).— A unified method for computing incompressible and compressible ows in boundary-fitted coordinates. J. Comput. Phys., 141(2), p. 153-173 (1998). Zbl0918.76054MR1619651
- Bramble (J. H.).— A proof of the inf-sup condition for the Stokes equations on Lipschitz domains, Mathematical Models and Methods in Applied Sciences, 13, p. 361-371 (2003). Zbl1073.35184MR1977631
- Březina (J.), Novotný (A.).— On Weak Solutions of Steady Navier-Stokes Equations for Monatomic Gas, Comment. Math. Univ. Carolin. 49, p. 611-632 (2008). Zbl1212.35345MR2493941
- Droniou (J.), Vazquez (J. L.).— Noncoercive convection-diffusion elliptic problems with Neumann boundary conditions, Calc. Var. Partial Differential Equations 34, no. 4, p. 413-434 (2009). Zbl1167.35342MR2476418
- Eymard (R.), Gallouët (T.), Herbin (R.), Latché (J.-C.).— A convergent finite element-finite volume scheme for the compressible Stokes problem. Part II: the isentropic case. Math. Comp. 79, no. 270, p. 649-675 (2010). Zbl1197.35192MR2600538
- Feireisl (E.).— Dynamics of viscous compressible fluids. Oxford Lecture Series in Mathematics and its Applications, 26. Oxford University Press, Oxford (2004). Zbl1080.76001MR2040667
- Fettah (A.), Gallouët (T.).— Numerical approximation of the general compressible Stokes problem. IMA Journal of Numerical Analysis (2012). Zbl06190569MR3081489
- Frehse (J.), Steinhauer (M.), Weigant (W.).— The Dirichlet Problem for Viscous Compressible Isothermal Navier-Stokes Equations in Two-Dimensions, Archive Ration. Mech. Anal. 198, no. 1, p. 1-12 (2010). Zbl1229.35175MR2679367
- Frehse (J.), Steinhauer (M.), Weigant (W.).— The Dirichlet Problem for Steady Viscous Compressible Flow in 3-D, Journal de Mathématiques Pures et Appliquées 97, no. 2, p. 85-97 (2012). Zbl1233.35154MR2875292
- Gallouët (T.), Herbin (R.).— Mesure, Intégration, Probabilités. Ellipses (2013). Zbl1273.28001
- Gallouët (T.), Herbin (R.), Latché (J.-C.).— A convergent finite element-finite volume scheme for the compressible Stokes problem. I. The isothermal case. Math. Comp., 78(267), p. 1333-1352 (2009). Zbl1223.76041MR2501053
- Harlow (F.), Amsden (A.).— A numerical uid dynamics calculation method for all flow speeds. Journal of Computational Physics, 8, p. 197-213 (1971). Zbl0221.76011
- Jesslé (D.), Novotný (A.).— Existence of renormalized weak solutions to the steady equations describing compressible fluids in barotropic regimes, J. Math. Pures Appl. 99 no. 3, p. 280-296 (2013). Zbl06146387MR3017990
- Jiang (S.), Zhou (C.).— Existence of weak solutions to the three dimensional steady compressible Navier-Stokes equations, Annales IHP - Analyse Nonlinéaire 28, p. 485-498 (2011). Zbl1241.35149MR2823881
- Leray (J.).— Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math., 63(1), p. 193-248 (1934). MR1555394
- Lions (P.-L.).— Mathematical topics in fluid mechanics -volume 2- compressible models. volume 10 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press (1998). Zbl0866.76002MR1637634
- Novotnỳ (A.), Straškraba (I.).— Introduction to the mathematical theory of compressible flow. Oxford Lecture Series in Mathematics and its Applications, 27. Oxford University Press, Oxford (2004). Zbl1088.35051MR2359339
- Novo (S.), Novotný (A.).— On the existence of weak solutions to the steady compressible Navier-Stokes equations when the density is not square integrable, J. Math. Kyoto Univ. 42, p. 531-550 (2002). Zbl1050.35074MR1967222
- Oran (E. S.), Boris (J. P.).— Numerical simulation of reactive flow. Cambridge University Press (2001). Zbl0980.76002
- Plotnikov (P.I.), Sokolowski (J.).— Stationary solutions of Navier-Stokes equations for diatomic gases, Russian Math. Surv. 62, p. 561-593 (2007). Zbl1139.76049MR2355421
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.