An existence proof for the stationary compressible Stokes problem
A. Fettah; T. Gallouët; H. Lakehal
Annales de la faculté des sciences de Toulouse Mathématiques (2014)
- Volume: 23, Issue: 4, page 847-875
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topReferences
top- Bijl (H.) and Wesseling (P.).— A unified method for computing incompressible and compressible ows in boundary-fitted coordinates. J. Comput. Phys., 141(2), p. 153-173 (1998). Zbl0918.76054MR1619651
- Bramble (J. H.).— A proof of the inf-sup condition for the Stokes equations on Lipschitz domains, Mathematical Models and Methods in Applied Sciences, 13, p. 361-371 (2003). Zbl1073.35184MR1977631
- Březina (J.), Novotný (A.).— On Weak Solutions of Steady Navier-Stokes Equations for Monatomic Gas, Comment. Math. Univ. Carolin. 49, p. 611-632 (2008). Zbl1212.35345MR2493941
- Droniou (J.), Vazquez (J. L.).— Noncoercive convection-diffusion elliptic problems with Neumann boundary conditions, Calc. Var. Partial Differential Equations 34, no. 4, p. 413-434 (2009). Zbl1167.35342MR2476418
- Eymard (R.), Gallouët (T.), Herbin (R.), Latché (J.-C.).— A convergent finite element-finite volume scheme for the compressible Stokes problem. Part II: the isentropic case. Math. Comp. 79, no. 270, p. 649-675 (2010). Zbl1197.35192MR2600538
- Feireisl (E.).— Dynamics of viscous compressible fluids. Oxford Lecture Series in Mathematics and its Applications, 26. Oxford University Press, Oxford (2004). Zbl1080.76001MR2040667
- Fettah (A.), Gallouët (T.).— Numerical approximation of the general compressible Stokes problem. IMA Journal of Numerical Analysis (2012). Zbl06190569MR3081489
- Frehse (J.), Steinhauer (M.), Weigant (W.).— The Dirichlet Problem for Viscous Compressible Isothermal Navier-Stokes Equations in Two-Dimensions, Archive Ration. Mech. Anal. 198, no. 1, p. 1-12 (2010). Zbl1229.35175MR2679367
- Frehse (J.), Steinhauer (M.), Weigant (W.).— The Dirichlet Problem for Steady Viscous Compressible Flow in 3-D, Journal de Mathématiques Pures et Appliquées 97, no. 2, p. 85-97 (2012). Zbl1233.35154MR2875292
- Gallouët (T.), Herbin (R.).— Mesure, Intégration, Probabilités. Ellipses (2013). Zbl1273.28001
- Gallouët (T.), Herbin (R.), Latché (J.-C.).— A convergent finite element-finite volume scheme for the compressible Stokes problem. I. The isothermal case. Math. Comp., 78(267), p. 1333-1352 (2009). Zbl1223.76041MR2501053
- Harlow (F.), Amsden (A.).— A numerical uid dynamics calculation method for all flow speeds. Journal of Computational Physics, 8, p. 197-213 (1971). Zbl0221.76011
- Jesslé (D.), Novotný (A.).— Existence of renormalized weak solutions to the steady equations describing compressible fluids in barotropic regimes, J. Math. Pures Appl. 99 no. 3, p. 280-296 (2013). Zbl06146387MR3017990
- Jiang (S.), Zhou (C.).— Existence of weak solutions to the three dimensional steady compressible Navier-Stokes equations, Annales IHP - Analyse Nonlinéaire 28, p. 485-498 (2011). Zbl1241.35149MR2823881
- Leray (J.).— Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math., 63(1), p. 193-248 (1934). MR1555394
- Lions (P.-L.).— Mathematical topics in fluid mechanics -volume 2- compressible models. volume 10 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press (1998). Zbl0866.76002MR1637634
- Novotnỳ (A.), Straškraba (I.).— Introduction to the mathematical theory of compressible flow. Oxford Lecture Series in Mathematics and its Applications, 27. Oxford University Press, Oxford (2004). Zbl1088.35051MR2359339
- Novo (S.), Novotný (A.).— On the existence of weak solutions to the steady compressible Navier-Stokes equations when the density is not square integrable, J. Math. Kyoto Univ. 42, p. 531-550 (2002). Zbl1050.35074MR1967222
- Oran (E. S.), Boris (J. P.).— Numerical simulation of reactive flow. Cambridge University Press (2001). Zbl0980.76002
- Plotnikov (P.I.), Sokolowski (J.).— Stationary solutions of Navier-Stokes equations for diatomic gases, Russian Math. Surv. 62, p. 561-593 (2007). Zbl1139.76049MR2355421