On weak solutions of steady Navier-Stokes equations for monatomic gas

Jan Březina; Antonín Novotný

Commentationes Mathematicae Universitatis Carolinae (2008)

  • Volume: 49, Issue: 4, page 611-632
  • ISSN: 0010-2628

Abstract

top
We use L estimates for the inverse Laplacian of the pressure introduced by Plotnikov, Sokolowski and Frehse, Goj, Steinhauer together with the nonlinear potential theory due to Adams, Hedberg, to get a priori estimates and to prove existence of weak solutions to steady isentropic Navier-Stokes equations with the adiabatic constant γ > 1 3 ( 1 + 13 ) 1 . 53 for the flows powered by volume non-potential forces and with γ > 1 8 ( 3 + 41 ) 1 . 175 for the flows powered by potential forces and arbitrary non-volume forces. According to our knowledge, it is the first result that treats in three dimensions existence of weak solutions in the physically relevant case γ 5 3 with arbitrary large external data. The solutions are constructed in a rectangular domain with periodic boundary conditions.

How to cite

top

Březina, Jan, and Novotný, Antonín. "On weak solutions of steady Navier-Stokes equations for monatomic gas." Commentationes Mathematicae Universitatis Carolinae 49.4 (2008): 611-632. <http://eudml.org/doc/250496>.

@article{Březina2008,
abstract = {We use $L^\infty $ estimates for the inverse Laplacian of the pressure introduced by Plotnikov, Sokolowski and Frehse, Goj, Steinhauer together with the nonlinear potential theory due to Adams, Hedberg, to get a priori estimates and to prove existence of weak solutions to steady isentropic Navier-Stokes equations with the adiabatic constant $\gamma >\{1\over 3\}(1+\sqrt\{13\})\approx 1.53$ for the flows powered by volume non-potential forces and with $\gamma >\{1\over 8\}(3+\sqrt\{41\}) \approx 1.175$ for the flows powered by potential forces and arbitrary non-volume forces. According to our knowledge, it is the first result that treats in three dimensions existence of weak solutions in the physically relevant case $\gamma \le \{5\over 3\}$ with arbitrary large external data. The solutions are constructed in a rectangular domain with periodic boundary conditions.},
author = {Březina, Jan, Novotný, Antonín},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {steady compressible Navier-Stokes equations; periodic domain; isentropic flow; existence of the weak solution; potential theory; steady compressible Navier-Stokes equations; periodic domain; isentropic flow; existence of a weak solution; nonlinear potential theory},
language = {eng},
number = {4},
pages = {611-632},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On weak solutions of steady Navier-Stokes equations for monatomic gas},
url = {http://eudml.org/doc/250496},
volume = {49},
year = {2008},
}

TY - JOUR
AU - Březina, Jan
AU - Novotný, Antonín
TI - On weak solutions of steady Navier-Stokes equations for monatomic gas
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 4
SP - 611
EP - 632
AB - We use $L^\infty $ estimates for the inverse Laplacian of the pressure introduced by Plotnikov, Sokolowski and Frehse, Goj, Steinhauer together with the nonlinear potential theory due to Adams, Hedberg, to get a priori estimates and to prove existence of weak solutions to steady isentropic Navier-Stokes equations with the adiabatic constant $\gamma >{1\over 3}(1+\sqrt{13})\approx 1.53$ for the flows powered by volume non-potential forces and with $\gamma >{1\over 8}(3+\sqrt{41}) \approx 1.175$ for the flows powered by potential forces and arbitrary non-volume forces. According to our knowledge, it is the first result that treats in three dimensions existence of weak solutions in the physically relevant case $\gamma \le {5\over 3}$ with arbitrary large external data. The solutions are constructed in a rectangular domain with periodic boundary conditions.
LA - eng
KW - steady compressible Navier-Stokes equations; periodic domain; isentropic flow; existence of the weak solution; potential theory; steady compressible Navier-Stokes equations; periodic domain; isentropic flow; existence of a weak solution; nonlinear potential theory
UR - http://eudml.org/doc/250496
ER -

References

top
  1. Adams D.R., Hedberg L.I., Function Spaces and Potential Theory, Springer, Berlin, 1996. Zbl0834.46021MR1411441
  2. Calderon A.P., Lebesgue spaces of differentiable functions and distributions, in Partial Differential Equations, Proc. Sympos. Pure Math., no. 4, Amer. Math. Soc., Providence, Rhode Island, 1961, pp.33-49. Zbl0195.41103MR0143037
  3. DiPerna R.J., Lions P.-L., 10.1007/BF01393835, Invent. Math. 98 (1989), 511-547. (1989) Zbl0696.34049MR1022305DOI10.1007/BF01393835
  4. Ebin D.B., Viscous fluids in a domain with frictionless boundary, in Global Analysis - Analysis on Manifolds, H. Kurke, J. Mecke, H. Triebel and R. Thiele, Eds., Teubner, Leipzig, 1983, pp.93-110. Zbl0525.58030MR0730604
  5. Feireisl E., On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable, Comment. Math. Univ. Carolin. 42 1 (2001), 83-98. (2001) Zbl1115.35096MR1825374
  6. Feireisl E., Dynamics of Viscous Compressible Fluids, Oxford University Press, Oxford, 2003. Zbl1080.76001MR2040667
  7. Feireisl E., Novotný A., Petzeltová H., On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids, J. Math. Fluid Dynamics 3 (2001), 358-392. (2001) MR1867887
  8. Frehse J., Goj S., Steinhauer M., 10.1007/s00229-004-0513-6, Manuscripta Math. 116 (2005), 3 265-275. (2005) Zbl1072.35143MR2130943DOI10.1007/s00229-004-0513-6
  9. Hoff D., 10.1007/BF00390346, Arch. Rational Mech. Anal. 132 (1995), 1-14. (1995) Zbl0836.76082MR1360077DOI10.1007/BF00390346
  10. Lions P.-L., Compressible models, Mathematical Topics in Fluid Dynamics, vol. 2, Oxford Science Publication, Oxford, 1998. Zbl0908.76004MR1637634
  11. Nečas J., Les Methodes Directes en théorie des Équations Elliptiques, Masson & CIE, Éditeurs, Paris, 1967. MR0227584
  12. Novo S., Novotný A., On the existence of weak solutions to steady compressible Navier-Stokes equations when the density is not square integrable, J. Math. Kyoto Univ. 42 3 (2002), 531-550. (2002) MR1967222
  13. Novotný A., Some remarks to the compactness of steady compressible isentropic Navier-Stokes equations via decomposition method, Comment. Math. Univ. Carolin. 37 2 (1996), 305-342. (1996) MR1399004
  14. Novotný A., Padula M., Existence and uniqueness of stationary solutions for viscous compressible heat-conductive fluid with large potential and small nonpotential external forces, Siberian Math. J. 34 (1991), 120-146. (1991) MR1255466
  15. Novotný A., Padula M., 10.1007/BF00971405, Siberian Math. J. 34 (1993), 898-922. (1993) MR1255466DOI10.1007/BF00971405
  16. Novotný A., Straškraba I., Introduction to the Mathematical Theory of Compressible Flow, Oxford University Press, Oxford, 2004. MR2084891
  17. Plotnikov P.I., Sokolowski J., 10.1007/s00220-005-1358-x, Comm. Math. Phys. 258 (2005), 3 567-608. (2005) MR2172011DOI10.1007/s00220-005-1358-x
  18. Plotnikov P.I., Sokolowski J., 10.1070/RM2007v062n03ABEH004414, Russian Math. Surveys 62 (2007), 3 561-593. (2007) Zbl1139.76049MR2355421DOI10.1070/RM2007v062n03ABEH004414
  19. Serre D., 10.1016/0167-2789(91)90055-E, Physica D 48 (1991), 113-128. (1991) MR1098658DOI10.1016/0167-2789(91)90055-E
  20. Tartar L., Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, L.J. Knopps, Ed., Research Notes in Math., no. 39, Pitman, Boston, 1979, pp.138-211. Zbl0437.35004MR0584398

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.