On weak solutions of steady Navier-Stokes equations for monatomic gas
Commentationes Mathematicae Universitatis Carolinae (2008)
- Volume: 49, Issue: 4, page 611-632
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBřezina, Jan, and Novotný, Antonín. "On weak solutions of steady Navier-Stokes equations for monatomic gas." Commentationes Mathematicae Universitatis Carolinae 49.4 (2008): 611-632. <http://eudml.org/doc/250496>.
@article{Březina2008,
abstract = {We use $L^\infty $ estimates for the inverse Laplacian of the pressure introduced by Plotnikov, Sokolowski and Frehse, Goj, Steinhauer together with the nonlinear potential theory due to Adams, Hedberg, to get a priori estimates and to prove existence of weak solutions to steady isentropic Navier-Stokes equations with the adiabatic constant $\gamma >\{1\over 3\}(1+\sqrt\{13\})\approx 1.53$ for the flows powered by volume non-potential forces and with $\gamma >\{1\over 8\}(3+\sqrt\{41\}) \approx 1.175$ for the flows powered by potential forces and arbitrary non-volume forces. According to our knowledge, it is the first result that treats in three dimensions existence of weak solutions in the physically relevant case $\gamma \le \{5\over 3\}$ with arbitrary large external data. The solutions are constructed in a rectangular domain with periodic boundary conditions.},
author = {Březina, Jan, Novotný, Antonín},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {steady compressible Navier-Stokes equations; periodic domain; isentropic flow; existence of the weak solution; potential theory; steady compressible Navier-Stokes equations; periodic domain; isentropic flow; existence of a weak solution; nonlinear potential theory},
language = {eng},
number = {4},
pages = {611-632},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On weak solutions of steady Navier-Stokes equations for monatomic gas},
url = {http://eudml.org/doc/250496},
volume = {49},
year = {2008},
}
TY - JOUR
AU - Březina, Jan
AU - Novotný, Antonín
TI - On weak solutions of steady Navier-Stokes equations for monatomic gas
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 4
SP - 611
EP - 632
AB - We use $L^\infty $ estimates for the inverse Laplacian of the pressure introduced by Plotnikov, Sokolowski and Frehse, Goj, Steinhauer together with the nonlinear potential theory due to Adams, Hedberg, to get a priori estimates and to prove existence of weak solutions to steady isentropic Navier-Stokes equations with the adiabatic constant $\gamma >{1\over 3}(1+\sqrt{13})\approx 1.53$ for the flows powered by volume non-potential forces and with $\gamma >{1\over 8}(3+\sqrt{41}) \approx 1.175$ for the flows powered by potential forces and arbitrary non-volume forces. According to our knowledge, it is the first result that treats in three dimensions existence of weak solutions in the physically relevant case $\gamma \le {5\over 3}$ with arbitrary large external data. The solutions are constructed in a rectangular domain with periodic boundary conditions.
LA - eng
KW - steady compressible Navier-Stokes equations; periodic domain; isentropic flow; existence of the weak solution; potential theory; steady compressible Navier-Stokes equations; periodic domain; isentropic flow; existence of a weak solution; nonlinear potential theory
UR - http://eudml.org/doc/250496
ER -
References
top- Adams D.R., Hedberg L.I., Function Spaces and Potential Theory, Springer, Berlin, 1996. Zbl0834.46021MR1411441
- Calderon A.P., Lebesgue spaces of differentiable functions and distributions, in Partial Differential Equations, Proc. Sympos. Pure Math., no. 4, Amer. Math. Soc., Providence, Rhode Island, 1961, pp.33-49. Zbl0195.41103MR0143037
- DiPerna R.J., Lions P.-L., 10.1007/BF01393835, Invent. Math. 98 (1989), 511-547. (1989) Zbl0696.34049MR1022305DOI10.1007/BF01393835
- Ebin D.B., Viscous fluids in a domain with frictionless boundary, in Global Analysis - Analysis on Manifolds, H. Kurke, J. Mecke, H. Triebel and R. Thiele, Eds., Teubner, Leipzig, 1983, pp.93-110. Zbl0525.58030MR0730604
- Feireisl E., On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable, Comment. Math. Univ. Carolin. 42 1 (2001), 83-98. (2001) Zbl1115.35096MR1825374
- Feireisl E., Dynamics of Viscous Compressible Fluids, Oxford University Press, Oxford, 2003. Zbl1080.76001MR2040667
- Feireisl E., Novotný A., Petzeltová H., On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids, J. Math. Fluid Dynamics 3 (2001), 358-392. (2001) MR1867887
- Frehse J., Goj S., Steinhauer M., 10.1007/s00229-004-0513-6, Manuscripta Math. 116 (2005), 3 265-275. (2005) Zbl1072.35143MR2130943DOI10.1007/s00229-004-0513-6
- Hoff D., 10.1007/BF00390346, Arch. Rational Mech. Anal. 132 (1995), 1-14. (1995) Zbl0836.76082MR1360077DOI10.1007/BF00390346
- Lions P.-L., Compressible models, Mathematical Topics in Fluid Dynamics, vol. 2, Oxford Science Publication, Oxford, 1998. Zbl0908.76004MR1637634
- Nečas J., Les Methodes Directes en théorie des Équations Elliptiques, Masson & CIE, Éditeurs, Paris, 1967. MR0227584
- Novo S., Novotný A., On the existence of weak solutions to steady compressible Navier-Stokes equations when the density is not square integrable, J. Math. Kyoto Univ. 42 3 (2002), 531-550. (2002) MR1967222
- Novotný A., Some remarks to the compactness of steady compressible isentropic Navier-Stokes equations via decomposition method, Comment. Math. Univ. Carolin. 37 2 (1996), 305-342. (1996) MR1399004
- Novotný A., Padula M., Existence and uniqueness of stationary solutions for viscous compressible heat-conductive fluid with large potential and small nonpotential external forces, Siberian Math. J. 34 (1991), 120-146. (1991) MR1255466
- Novotný A., Padula M., 10.1007/BF00971405, Siberian Math. J. 34 (1993), 898-922. (1993) MR1255466DOI10.1007/BF00971405
- Novotný A., Straškraba I., Introduction to the Mathematical Theory of Compressible Flow, Oxford University Press, Oxford, 2004. MR2084891
- Plotnikov P.I., Sokolowski J., 10.1007/s00220-005-1358-x, Comm. Math. Phys. 258 (2005), 3 567-608. (2005) MR2172011DOI10.1007/s00220-005-1358-x
- Plotnikov P.I., Sokolowski J., 10.1070/RM2007v062n03ABEH004414, Russian Math. Surveys 62 (2007), 3 561-593. (2007) Zbl1139.76049MR2355421DOI10.1070/RM2007v062n03ABEH004414
- Serre D., 10.1016/0167-2789(91)90055-E, Physica D 48 (1991), 113-128. (1991) MR1098658DOI10.1016/0167-2789(91)90055-E
- Tartar L., Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, L.J. Knopps, Ed., Research Notes in Math., no. 39, Pitman, Boston, 1979, pp.138-211. Zbl0437.35004MR0584398
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.