On the arithmetic of cross-ratios and generalised Mertens’ formulas

Jouni Parkkonen; Frédéric Paulin

Annales de la faculté des sciences de Toulouse Mathématiques (2014)

  • Volume: 23, Issue: 5, page 967-1022
  • ISSN: 0240-2963

Abstract

top
We develop the relation between hyperbolic geometry and arithmetic equidistribution problems that arises from the action of arithmetic groups on real hyperbolic spaces, especially in dimension 5 . We prove generalisations of Mertens’ formula for quadratic imaginary number fields and definite quaternion algebras over , counting results of quadratic irrationals with respect to two different natural complexities, and counting results of representations of (algebraic) integers by binary quadratic, Hermitian and Hamiltonian forms with error bounds. For each such statement, we prove an equidistribution result of the corresponding arithmetically defined points. Furthermore, we study the asymptotic properties of crossratios of such points, and expand Pollicott’s recent results on the Schottky-Klein prime functions.

How to cite

top

Parkkonen, Jouni, and Paulin, Frédéric. "On the arithmetic of cross-ratios and generalised Mertens’ formulas." Annales de la faculté des sciences de Toulouse Mathématiques 23.5 (2014): 967-1022. <http://eudml.org/doc/275303>.

@article{Parkkonen2014,
abstract = {We develop the relation between hyperbolic geometry and arithmetic equidistribution problems that arises from the action of arithmetic groups on real hyperbolic spaces, especially in dimension $\le 5$. We prove generalisations of Mertens’ formula for quadratic imaginary number fields and definite quaternion algebras over $\mathbb\{Q\}$, counting results of quadratic irrationals with respect to two different natural complexities, and counting results of representations of (algebraic) integers by binary quadratic, Hermitian and Hamiltonian forms with error bounds. For each such statement, we prove an equidistribution result of the corresponding arithmetically defined points. Furthermore, we study the asymptotic properties of crossratios of such points, and expand Pollicott’s recent results on the Schottky-Klein prime functions.},
author = {Parkkonen, Jouni, Paulin, Frédéric},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
number = {5},
pages = {967-1022},
publisher = {Université Paul Sabatier, Toulouse},
title = {On the arithmetic of cross-ratios and generalised Mertens’ formulas},
url = {http://eudml.org/doc/275303},
volume = {23},
year = {2014},
}

TY - JOUR
AU - Parkkonen, Jouni
AU - Paulin, Frédéric
TI - On the arithmetic of cross-ratios and generalised Mertens’ formulas
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2014
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 5
SP - 967
EP - 1022
AB - We develop the relation between hyperbolic geometry and arithmetic equidistribution problems that arises from the action of arithmetic groups on real hyperbolic spaces, especially in dimension $\le 5$. We prove generalisations of Mertens’ formula for quadratic imaginary number fields and definite quaternion algebras over $\mathbb{Q}$, counting results of quadratic irrationals with respect to two different natural complexities, and counting results of representations of (algebraic) integers by binary quadratic, Hermitian and Hamiltonian forms with error bounds. For each such statement, we prove an equidistribution result of the corresponding arithmetically defined points. Furthermore, we study the asymptotic properties of crossratios of such points, and expand Pollicott’s recent results on the Schottky-Klein prime functions.
LA - eng
UR - http://eudml.org/doc/275303
ER -

References

top
  1. Babillot (M.).— On the mixing property for hyperbolic systems. Israel J. Math. 129 p. 61-76 (2002). Zbl1053.37001MR1910932
  2. Beardon (A. F.).— The geometry of discrete groups. Grad. Texts Math. 91, Springer-Verlag (1983). Zbl0528.30001MR698777
  3. Benoist (Y.) and Quint (J.-F.).— Random walks on finite volume homogeneous spaces. Invent. Math. 187 p. 37-59 (2012). Zbl1244.60009MR2874934
  4. Cohn (H.).— A classical invitation to algebraic numbers and class fields. Springer Verlag (1978). Zbl0395.12001MR506156
  5. Cohn (H.).— A second course in number theory. Wiley, 1962, reprinted as Advanced number theory, Dover (1980). Zbl0208.31501MR594936
  6. Cosentino (S.).— Equidistribution of parabolic fixed points in the limit set of Kleinian groups. Erg. Theo. Dyn. Syst. 19 p. 1437-1484 (1999). Zbl0947.30033MR1738946
  7. Dal’Bo (F.), Otal (J.-P.), and Peigné (M.).— Séries de Poincaré des groupes géométriquement finis. Israel J. Math. 118 p. 109-124 (2000). Zbl0968.53023MR1776078
  8. Delgove (F.) and Retailleau (N.).— Sur la classification des hexagones hyperboliques à angles droits en dimension 5. This volume. 
  9. Deuring (M.).— Algebren. 2nd. ed., Erg. Math. Grenz. 41, Springer Verlag (1968). Zbl0159.04201MR228526
  10. Elstrodt (J.), Grunewald (F.), and Mennicke (J.).— Groups acting on hyperbolic space: Harmonic analysis and number theory. Springer Mono. Math., Springer Verlag (1998). Zbl0888.11001MR1483315
  11. Fenchel (W.).— Elementary geometry in hyperbolic space. de Gruyter Stud. Math. 11, de Gruyter (1989). Zbl0674.51001MR1004006
  12. Gorodnik (A.) and Paulin (F.).— Counting orbits of integral points in families of affine homogeneous varieties and diagonal flows. J. Modern Dynamics 8 p. 25-59 (2014). Zbl06376853
  13. Gorodnik (A.) and Paulin (F.).— In preparation. 
  14. Grotz (W.).— Mittelwert der Eulerschen ϕ -Funktion und des Quadrates der Dirichletschen Teilerfunktion in algebraischen Zahlkörpern. Monatsh. Math. 88 p. 219-228 (1979). Zbl0413.12012MR553731
  15. Harcos (G.).— Equidistribution on the modular surface and L-functions. In “Homogeneous flows, moduli spaces and arithmetic", M. Einsiedler et al eds., Clay Math. Proc. 10, Amer. Math. Soc., p. 377-387 (2010). Zbl1267.11057MR2648699
  16. Hardy (G. H.) and Wright (E. M.).— An introduction to the theory of numbers. Oxford Univ. Press, sixth ed. (2008). Zbl1159.11001MR2445243
  17. Huxley (M. N.).— Exponential sums and lattice points III. Proc. London Math. Soc. 87 p. 591-609 (2003). Zbl1065.11079MR2005876
  18. Kellerhals (R.).— Quaternions and some global properties of hyperbolic 5-manifolds. Canad. J. Math. 55 p. 1080-1099 (2003). Zbl1054.57019MR2005283
  19. Kim (I.).— Counting, mixing and equidistribution of horospheres in geometrically finite rank one locally symmetric manifolds. Preprint [arXiv:1103.5003], to appear in J. reine angew. Mathematik. Zbl1319.53051
  20. Krafft (V.) and Osenberg (D.).— Eisensteinreihen für einige arithmetisch definierte Untergruppen von SL 2 ( ) . Math. Z. 204 p. 425-449 (1990). Zbl0725.11024MR1107473
  21. Lang (S.).— Algebraic number theory. Grad Texts Math. 2nd ed., Springer Verlag, 1994. Zbl0811.11001MR1282723
  22. Maclachlan (C.) and Reid (A.).— Parametrizing Fuchsian subgroups of the Bianchi groups. Canad. J. Math. 43 p. 158-181 (1991). Zbl0739.20020MR1108918
  23. Mohammadi (A.) and Oh (H.).— Matrix coefficients, counting and primes for orbits of geometrically finite groups. Preprint [arXiv:1208.139], to appear in J. European Math. Soc. 
  24. Nagell (T.).— On the number of representations of an A-number in an algebraic field. Ark. Mat. 4 p. 467-478 (1962). Zbl0107.04001MR150125
  25. Odoni (R. W. K.).— Representations of algebraic integers by binary quadratic forms and norm forms from full modules of extension fields. J. Numb. Theo. 10 p. 324-333 (1978). Zbl0411.12010MR506642
  26. Oh (H.).— Orbital counting via mixing and unipotent flows. In “Homogeneous flows, moduli spaces and arithmetic", M. Einsiedler et al eds., Clay Math. Proc. 10, Amer. Math. Soc., p. 339-375 (2010). Zbl05907414MR2648698
  27. Oh (H.) and Shah (N.).— Equidistribution and counting for orbits of geometrically finite hyperbolic groups. J. Amer. Math. Soc. 26 p. 511-562 (2013). Zbl1334.22011MR3011420
  28. Oh (H.) and Shah (N.).— Counting visible circles on the sphere and Kleinian groups. Preprint [arXiv:1004.2129], to appear in “Geometry, Topology and Dynamics in Negative Curvature" (ICM 2010 satellite conference, Bangalore), C. S. Aravinda, T. Farrell, J.-F. Lafont eds, London Math. Soc. Lect. Notes. 
  29. Otal (J.-P.) and Peigné (M.).— Principe variationnel et groupes kleiniens. Duke Math. J. 125 p. 15-44 (2004). Zbl1112.37019MR2097356
  30. Parker (J.) and Short (I.).— Conjugacy classification of quaternionic Möbius transformations. Comput. Meth. Funct. Theo. 9 p. 13-25 (2009). Zbl1158.15014MR2478260
  31. Parkkonen (J.) and Paulin (F.).— Prescribing the behaviour of geodesics in negative curvature. Geom. & Topo. 14 p. 277-392 (2010). Zbl1191.53026MR2578306
  32. Parkkonen (J.) and Paulin (F.).— Spiraling spectra of geodesic lines in negatively curved manifolds. Math. Z. 268 (2011) 101-142, Erratum: Math. Z. 276 p. 1215-1216 (2014). Zbl1228.53055MR2805426
  33. Parkkonen (J.) and Paulin (F.).— On the representations of integers by indefinite binary Hermitian forms. Bull. London Math. Soc. 43 p. 1048-1058 (2011). Zbl1255.11022MR2861527
  34. Parkkonen (J.) and Paulin (F.).— Équidistribution, comptage et approximation par irrationnels quadratiques. J. Mod. Dyn. 6 p. 1-40 (2012). MR2929128
  35. Parkkonen (J.) and Paulin (F.).— On the arithmetic and geometry of binary Hamiltonian forms. Appendix by Vincent Emery. Algebra & Number Theory 7 p. 75-115 (2013). Zbl1273.11065MR3037891
  36. Parkkonen (J.) and Paulin (F.).— Skinning measure in negative curvature and equidistribution of equidistant submanifolds. Erg. Theo. Dyn. Sys. 34 p. 1310-1342 (2014). Zbl1321.37029MR3227157
  37. Parkkonen (J.) and Paulin (F.).— Counting arcs in negative curvature. Preprint [arXiv:1203. 0175], to appear in “Geometry, Topology and Dynamics in Negative Curvature" (ICM 2010 satellite conference, Bangalore), C. S. Aravinda, T. Farrell, J.-F. Lafont eds, London Math. Soc. Lect. Notes. MR2578306
  38. Parkkonen (J.) and Paulin (F.).— Counting common perpendicular arcs in negative curvature. Preprint [arXiv:1305.1332]. 
  39. Parkkonen (J.) and Paulin (F.).— Counting and equidistribution in Heisenberg groups. Preprint [arXiv:1402.7225]. 
  40. Pollicott (M.).— The Schottky-Klein prime function and counting functions for Fenchel double crosses. Preprint (2011). 
  41. Roblin (T.).— Ergodicité et équidistribution en courbure négative. Mémoire Soc. Math. France, 95 (2003). Zbl1056.37034
  42. Sarnak (P.).— Reciprocal geodesics. Clay Math. Proc. 7 p. 217-237 (2007). Zbl1198.11039MR2362203
  43. Serre (J.-P.).— Lectures on N X ( p ) . Chapman & Hall/CRC Research Notes Math. 11, CRC Press (2012). Zbl1238.11001MR2920749
  44. Shimura (G.).— Introduction to the arithmetic theory of automorphic functions. Princeton Univ. Press (1971). Zbl0872.11023MR314766
  45. Vignéras (M. F.).— Arithmétique des algèbres de quaternions. Lect. Notes in Math. 800, Springer Verlag (1980). Zbl0422.12008
  46. Walfisz (A.).— Weylsche Exponentialsummen in der neueren Zahlentheorie. VEB Deutscher Verlag der Wissenschaften (1963). Zbl0146.06003MR220685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.